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Chapter 5. State Machines

Controlling complexity is the essence of computer
programming.
— Brian Kernigan

The gen_statem behaviour is based on the Mealy state machine. In
versions before OTP 20, another behaviour called gen_fsm implemented
a Moore state machine. The Mealy machine implementation improved
performance for all OTP libraries.

This behavior is built on the server behavior (gen_server) and has
the same dynamics seen in the previous chapter, also adding state
management at the behavior level. The difference between the server
and the state machine is that an event received by a server is handled in
only one dimension, the implemented code and the only existing state
data. In the state machine, the code that handles each request, and each
event, depends on the internal state of the state machine.

That is, if @ machine has two states (for example, opened and closed),
we can develop two versions of the server in our system, one identifying
what we would do in the case of being in the first state (opened) and not
taking into account the other state, and then we would go on to develop
how the server should behave in the second state (closed) and equally
regardless of the previous state. Obviously and thanks to the pattern
matching we can take advantage of common events or requests that are
independent of the state.

We will try to fully exploit the features available in this behavior through
the examples of the traffic light, the elevator and the payment system.
We will see these examples throughout the chapter.

1. Events, States, and State Diagrams

One of the most important tools in generating a finite state machine is
state diagrams. These diagrams provide us at a glance with all the events
that we canreceive, all the states and all the possible transitions between
states.

The states in these diagrams are represented by a circumference (or a
circle) with the name of the state written inside. Ideally, they are all the
same size and the same color. To facilitate reading in diagrams with many
states we can change the color of some of them to form visual groups.

state3
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Starters and Terminators are vertical or horizontal lines of a certain
thickness. They indicate the beginning and/or end of the state machine.

The events are the lines that allow transit from one state to another.
These arrows start from one state or initiator and end in another state
or finisher. The arrowhead marks your direction. Along its trajectory, the
name of the event is written.

Events can also loop, that is, start and end in the same state, indicating
that even though the event has been received and an action is performed,
the state is not modified.

state1

Events are generally actions that are performed by a data input on the
state machine. This can mean receiving a message or even triggering a
timing event.

For our examples, we are going to draw their state diagrams. The elevator
example will have the following diagram:

ground_floor

The traffic light example will show the following diagram:
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Finally, the example of our payment process will have the following
diagram:

credentials

stop [ card_payment D [ transfer_payment D

Now we will see how to implement them.
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2. Mealy State Machine

Theory tells us that any Moore state machine can be represented
by a Mealy state machine, but not all Mealy state machines can be
represented by a Moore state machine.

This is due to the special feature of Mealy machines of combining actions
with state to obtain the result of the change of state for an incoming
event. While the Moore state machine can be represented as:

State(S) x Event(E) -> State(S')

For each event processed in a given state, we obtain the same or another
different state of departure.

The Mealy machine adds actions to be performed in the result:

State(S) x Event(E) -> Action(A), State(S')

In this way, we return the change of state and also one or several actions
to be carried out.

Through the callbacks, the server can return not only a state change for
the process but also the return to perform to be sent to the client. In the
case of the state machine, the actions include not only the response to
the user but also timers, or next events to be fired immediately similar
to the effect of continue, or postponing events, or changing the module
in use.

In our traffic light example, we set timers. In the Mealy machine setting
the timer only based on the current state and without affecting the newly
received events is possible. We will see it later.

Our elevator example might have number buttons with the floor number.
The actions would give us support to move to another floor and execute
a check action to know if the elevator should stop or continue to the next
stop. It can be an interesting exercise.

2.1. Template of a state machine

The way to use gen_statem differs depending on the way to handle the
events that we decide to use. We can choose between state functions or
the event handler function.

The choice is made through the definition of the callback
callback_mode/0. This callback must return one of the following
values:

65



State Machines

handle_event_function

Defines the use of a single handle_event /4 function as the entry
point for all events received in any state.

state_functions

It allows to use of as many different functions as states have been
defined. In addition to having the name of the state, these functions
have three other parameters.

The callback return can be any one of these two atoms or a list containing
one of the two atoms and more configuration options. At the moment
there is only one option called state_enter. We will see later what
state_enter does.

3. Template for state functions

This template uses functions named after the states. They need to
be added depending on the names of our states. As an example, the
template has defined two states turned_on and turned_off.

-module(simplestate state functions).
-behaviour(gen statem).

-export([callback mode/0,
init/1,
code change/4,
terminate/3]).

%% definir funciones de estado. Ejemplo:
-export([turned on/3,

turned off/3]).
callback mode() -> state functions.

-record(state data, {}).

init([]) ->
{ok, turned off, #state data{}}.

code change( Vsn, State, Data, Extra) ->
{ok, State, Data}.

terminate( Reason, State, Data) ->
ok.

turned on( EventType, EventContent, Data) ->
{next state, turned off, Data}.

turned off( EventType, EventContent, Data) ->
{next _state, turned on, Data}.
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3.1. Template for event management function

This template does not require defining state functions, all requests will
go into handle_event/4:

-module(simplestate_handle_event).
-behaviour(gen_statem).

-export([callback _mode/0,
init/1,
code_change/4,
terminate/3,
handle_event/4]).

callback mode() -> handle_event function.
-record(state_data, {}).

init([]) ->
{ok, turned off, #state data{}}.

code_change(_Vsn, State, Data, _Extra) ->
{ok, State, Data}.

terminate(_Reason, _State, _Data) ->
ok.

handle_event(_EventType, EventContent, turned_on, Data) ->
{next_state, turned_off, Data};

handle_event(_EventType, _EventContent, turned off, Data) ->
{next_state, turned_on, Data}.

4. An event life cycle

The life cycle of a state machine is defined by its transitions, and each
transition happens when an event is received. Let's see in detail what
happens in the state machine when receiving a step event. Regardless of
the event, the steps are as follows:

1. We receive an event. The event is decomposed to indicate in the
callback the type of request and the data. We add the state data and
state name and execute the function.

2. We receive the return from the function. The callback executed and
gave us what to do next:

a. We keep (keep_state). There is no change of state.

b. We change or repeat state (next_state or repeat_state). We
change the state, it implies the following tasks:

+ All state timers are stopped.
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* If state_enter was configured, the execution of an enter event
with the event data of the previous state is added as an action.

* Check if there are postponed events to repeat them.
¢. We stop the state machine (stop).
3. We execute the actions defined in the return of the callback:

* Postpone. The current event enters the queue of postponed events
to be relaunched when we change the state.

+ Timers. Configure the timers indicated in the actions.

+ Add the events (next_event) to be fired immediately.
Throughout the flow, we see how new events can occur from the
processing of the state change or actions of the next_event type. These

new events will be executed before going back to the cycle of listening
for new incoming events.
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RunNextState

stop_timer_outs

RunAction:

handle_event repeat_or_next_state

.

postponed_event

send_postponed

configure_timer_outs

send_next_events

5. Initiating the state machine

To start the state machine we only need to execute
the gen_statem:start_link/3-4, gen_statem:start/3-4, or
[gen_statem:start_monitor/3-4] function depending on the type of link
to the process that will start the process. We can see the definition of the
parameters for this function below:

-spec start_link(module(), args(), options()) -> result().
-spec start_link(servername(), module(), args(),
options()) -> result().

-type servername() :: {local,name()} |
{global,globalname()} |
{via,module(),vianame()}.

-type name() :: atom().

-type globalname() :: term().

-type vianame() :: term().

-type args() :: term().
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-type options() :: [option()].
-type option() :: {debug,dbgs()} |
{timeout, time()} |
{spawn_opt,sopts()}.
-type dbgs() :: [dbg()].
-type dbg() :: trace | log | statistics
{log to file,filename()} |
{install, {function(), functionstate()}}.
-type sopts() :: [term()].

-type result() :: {ok,pid()} | ignore | {error,error()}.
-type error() :: {already started,pid()} | term().

Nothing new. The parameters to be used will change according to the
example to be implemented. In our elevator example, we can start a state
machine process as follows:

start_link() ->
gen_statem:start_link({local, ?MODULE}, ?MODULE, [], []).

This execution allows us to spawn a process with the name of the module
and access it through that name.

We can initiate the payment process anonymously:

start_link() ->
gen_statem:start_link(?MODULE, [1, []).

In this way, we can generate as many as we need. Finally, we will start the
traffic light process by passing it parameters:

start_link(GreenTime, RedTime) ->
gen_statem:start_link({local, ?MODULE}, ?MODULE,
[GreenTime, RedTime], []).

The state machine init/1 function has one parameter. The
parameters are filled with the information passed in the function
gen_statem:start_1link/3-4.The return will include the state data
and also the name of the state:

-spec init([term()]) -> result().

-type result() :: {ok, statename(), statedata()}
{ok, statename(), statedata(), actions()} |
{stop, reason()} |

ignore.
-type actions() :: [action()].
-type reason() :: term().

-type statename() :: atom().
-type statedata() :: term().

The server-related options can be seen in the Section 2, "Starting the
server”. The contribution of gen_statem is the addition of statename()
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and actions(). The state name allows us to configure the initial state, the
entry point for the first event in our system. Actions define a series of
activities to perform before attending the next event. We will see later
all the types of actions available.

The implementation for our elevator example is as follows:

init([]) ->
{ok, ground_floor, #state{}}.

In our traffic light, the initialization will get two parameters. We will first
define a register for the state and function as follows:

-record(state, {
green_time :: pos_integer(),
red_time :: pos_integer(),
next :: green | red

1.

init([GreenTime, RedTime]) ->
{ok, red, #state{
green_time = GreenTime,
red_time = RedTime
}, [{state_timeout, RedTime, timeout}]}.

We start the red light and configure the waiting times for each of the
colors. Also, we added an action to create a state timer (state_timeout) to
raise a timed event (timeout) when the timeout expires. We will see this
timer action and the rest of the timer actions in the Section 8, "Timers"”.

Finally, the implementation of the init/1 function for our payment
system. Data collection from the payment system consists of several
steps. That information should be stored in the state:

-record(state, {

name :: string(),
email :: string(),
price :: float(),
card :: string(),
address :: string()
.
init([]) ->

{ok, identify, #state{}}.
We start at identify and wait for the arrival of the events.
6. Events and State change
Once we have our state machine started and in the first state we

are prepared to attend events. The events will be received in the
handle_event/4 callback or the state-named functions for event
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handling. It depends on the type of callback chosen. For the examples, |
am going to use only the type of state_functions.

Note

In my experience, the state_functions mode is simpler to
understand and works well as a way of learning how the state
machine works. However, when implementing state machines, the
handle_event_function mode tends to be more powerful because
it is similar to the gen_server callbacks (handle_call/3 and
handle_cast/2) and allows for matching of events and states
in combination.

Remember that functions will have three parameters. The first parameter
is in charge of the type of event, the second will be the content of the
event and the third parameter is the data of the state of the process. We
are going to list the types of events that we can receive in these functions,
that is, the content that can be received in the first parameter:

{call, from()}

Synchronous call is sent to the state machine from the
aggregate process as the second parameter of the tuple.
It is sent wusing the function gen_statem:call/2 or
gen_statem:send_request/2.

cast

Asynchronous call sent to the state machine. It is sent using the
gen_statem:cast /2 function.

info

Information received in the process without a specific format. It is
sent using the erlang: send/2 function or the specific syntax for
sending messages using the exclamation mark (!).

timeout | {timeout, term()} | state_timeout

This event is received by a timer generated through one of the state
machine’s timeout actions.

internal

This event can only be generated from the actions section in the
return tuple of the status functions or the event handler function.
We will see later how to generate this event.

As events we receive not only information from timers or messages but
also structured information such as call (synchronous calls) and cast
(asynchronous calls) as we saw in gen_server.
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In our elevator example, we can see the implementation of the status
functions using cast to receive events from the functions button_up/0
and button_down/0 as follows:

ground_floor(cast, up, StateData) ->
io:format("going up to the first floor~n", []),
{next_state, first_floor, StateData};

ground_floor(cast, down, StateData) ->
io:format("beeeep! cannot go down~n", []),
{next_state, ground floor, StateData}.

first floor(cast, up, StateData) ->
io:format("going up to the second floor~n", []),
{next_state, second_floor, StateData};

first _floor(cast, down, StateData) ->
io:format("going down to the ground floor~n", []),
{next_state, ground floor, StateData}.

second_floor(cast, up, StateData) ->
io:format("beeeep! cannot do up~n", [1),
{next_state, second_floor, StateData};

second_floor(cast, down, StateData) ->
io:format("going down to the firt floor~n", [1]),
{next_state, first floor, StateData}.

We can always change state through the return of a callback when it is
executed. The combinations that we have are the following:

{next_state, state_name(), state_data(), actions()}

It will change the state of our state machine to a new one. We must
add the new state as the second element of the tuple. The status can
be a new one or the same one. Continuing in the same state is not
considered a change to next_state and it is preferable to use one of
the following options. The actions are optional and can be omitted
thus using a tuple of only three elements.

{keep_state, state_data(), actions()}

We maintain the current state of the state machine, being able to
change only the state data. The actions are optional and can be
omitted thus using a tuple of only two elements.

keep_state_and_data | {keep_state_and_data, actions()}

We maintain current status and current status information. It allows
us to make returns more compact and more readable. The actions
are optional and if they are not indicated we can return the atom
keep_state_and_data only.
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{repeat_state, state_data(), actions()}

We repeat the current state. Unlike maintaining our previous state
with this option, the system supposes a state exit and re-entry. If
we had added the state_enter option in the callback_mode/0
function it will generate the execution of the state again with the
enter event. Actions are optional and can be omitted.

{repeat_state_and_data, actions()}

We repeat the current state and the state data. As in the previous
case, it allows us to exit and re-enter the state, generating an enter
event if so. Actions are optional and can be omitted by using only
the repeat_state_and_data atom instead.

stop | {stop, reason(), state_data()}

Stops execution of the state machine and passes execution to the
terminate/3 callback. Specifying state information is optional.

{stop_and_reply, reason(), reply(), state_data()}

Stops execution of the state machine and passes execution to the
terminate/3 callback. Before it sends the response to the calling
process. Specifying state information is optional.

Although in the definition of the Mealy machine, the return of each event
is @ new state and actions we can maintain the state and we can ignore
the actions if we do not have actions to execute, as we saw in the elevator
example above.

In our traffic light implementation, we have the state timers and
synchronous call (call) events along with returns where we can see the
state change (next_state) and how to keep the state and state data
(keep_state_and_data) in addition to the response actions (reply) and
state timer (state_timeout):

handle_event(state_timeout, {change, green}, red, State) ->
{next_state, amber, State,
[{state_timeout, ?AMBER_TIME, {change, red}}1};

handle_event(state_timeout, {change, green}, amber, State) ->
#state{green_time = GreenTime} = State,
{next_state, green, State,
[{state_timeout, GreenTime, {change, red}}1};

handle_event(state_timeout, {change, red}, amber, State) ->
#state{red_time = RedTime} = State,
{next_state, red, State,
[{state_timeout, RedTime, {change, green}}1};

handle_event(state_timeout, {change, red}, green, State) ->
{next_state, amber, State,
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[{state timeout, ?AMBER TIME, {change, green}}1};
handle _event({call, From}, watch light, StateName, StateData)
->

{keep_state and data,
[{reply, From, StateName}]}.

In the payment example we only use synchronous calls (call) like the
watch_light call seen above. You can see its implementation at the end
of this chapter in Section 16, "Example of payment".

7. Actions

We have been able to see in the return of the callbacks the possibility of
indicating some actions. In this section we will see the types of actions
that we can add in this return.

We can organize the actions in groups. These groups are not exclusive. We
can add each action to none or several groups. We will also see actions
not belonging to any group. The groups are:

Input actions
These actions include hibernation, timeout, and response actions.
Timing actions
These actions include event, generic and state timers.
Transition actions
These actions include postponing an event, hibernation, event
timer, generic timer and state timer.
Note
These groups have been defined through types in the source code

of the gen_statem module. In the Erlang/OTP documentation® for
this module we can clearly see these types and what they include.

The actions are accumulated in a list. This list could contain duplicate
or incompatible actions with each other. As a general rule, the transition
actions overwrite each other and only the last one that we specify is taken
into account.

Other actions like sending an event (next_event) can be added as many
as needed.

We are going to list all the possible actions that we have:

* http://erlang org/doc/man/gen_statem.html
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postpone | {postpone, boolean()}

It allows us to postpone the treatment of an event. This action
places postponed messages in a queue to be processed only when
the status changes. Very useful if we find ourselves in a state
where a type of event cannot yet be processed, for example in a
disconnected state.

{next_event, event_type(), event_content()}

It allows us to add a new event in the event queue to be processed
by the state machine. Of this type we can add as many actions as we
need. If we need to differentiate between events sent by external
elements via call, cast, info or timeout we can use internal. In this
way we know the unequivocal origin of the event.

hibernate | {hibernate, boolean()}

Sends the process to hibernation. This state lasts until receiving a
new event. If we have many state machine processes and event
handling takes a long time for a certain state, we can add this
action, thus compressing memory usage and reducing processor
consumptionz.

timeout() | {timeout, timeout(), event_content(),
options ()}

Create a nameless or event timer. We will look at the timers later
along with their options. The timeout() data type can indicate a
positive integer or the atom infinity.

{{timeout, name () }, timeout (), event_content (),
options ()}

Create a generic or named timer. We will look at the timers later
along with their options. The options in this specification are
optional.

{state_timeout, timeout(), event_content(), options()}

Create a state timer. We will look at the timers later along with their
options. The options in this specification are optional.

{reply, from(), term()}

Sends a response to the calling process. We must have the data
From. Normally this type of action is only used in functions where
an event of type call has been received.

2However, if there are a large number of Constantly received events hibernation could be a performance
penalty. Use this option carefully.
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{change_callback module, module()}

Change the module for the execution of the following callbacks.
This function is useful if our state machine implementation is very
large and we want to write the specific functions of each state in a
different module.

{push_callback module, module()}

It acts similarly to the previous case but maintains a stack with the
modules that we have been changing. This allows the designing
of multilevel state machines where the module acts as another
dimension within the states and allows to define of the states by
groups. We will see this concept later.

pop_callback_module

It allows us to return to the previous group of states. It is the
complementary operation to push_callback_module.

Within our examples, as we saw in the previous section, we used the state
timeout actions (state_timeout) as well as the response action (reply).

We will develop the next version of the traffic light a bit later where we
will use more actions like hibernate.

We can also see two versions of some actions where they appear in the
form of a tuple. Remember that actions are a property list (see proplists
module). The property list allows the duplication of its elements and
depending on the function to obtain the data, we can obtain all the values
under the same key, or the first value of the list. So, if we need to avoid
postponing an event or going into hibernation, we can add to the action
list:

NewActions =
[{hibernate, false}, {postpone, false} | Actions],

8. Timers

Unlike the other behaviors in the state machine, we can find different
types of timers. Each type acts differently and is implemented differently.

The types that we can find are the following:
event timer

This timer is similar to what we can find in any other behavior.
It is only triggered if, after specifying it, no other event occurs in
that period of time. That is, it is an ideal waiting time to measure
inactivity in the process.
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state timer

Act on the state. As long as the status does not change, it will
continue to count the time until it expires and generates the
status_timeout event. Useful to limit permanence in a state, for
example, of an unauthenticated user in protocols such as IMAP or
XMPP.

generic timer

This timer requires the specification of a name. If before generating
the call timeout, name()} another generic timer with the same name
is generated, the counter is reset. It can be useful to react at
specific times to ping systems where a user action is required or the
communication channel is closed.

In the case of using infinity as timeout instead of configuring the timer,
it is ignored or eliminated. If the value passed is zero (0) a timer is not
generated either, instead the event is sent directly.

The timing actions will not only allow us to configure the type of timer
but also the information to be launched when the timeout event occurs.
Therefore, the events received as event type and event content will be:

timeout, event_content()

For actions fired as {timeout, 100, tick} will be received as the
timeout event type and as the tick event content.

{timeout, name()}, event_content()

For actions fired as {{timeout, clock}, 100, tick} will be received as
event type {timeout, clock} and as content of the tick event.

state_timeout, event_content()

For actions fired as {state_timeout, 100, tick} will be received as
state_timeout event type and as tick event content.

We can see an example case in the traffic light code:

handle_event(state_timeout, {change, green}, red, State) ->
{next_state, amber, State,
[{state_timeout, ?AMBER_TIME, {change, red}}]}.

We receive a stateful timer event ({change, green}) and generate an
action with another stateful timer. This time change to red. In this way,
we maintain the flow of change between traffic light colors and waiting
times.

78



State Machines

9. States groups

We are in the process of purchasing a domain. Domains have specific
characteristics when we try to buy domains from a specific country. For
example, to buy a .es domain, the system requires us to add our Spanish
identification number (DNI or CIF), for a .se domain we need to have a
Swedish ID and the same for other domains. Each domain has its specific
data with its validations and peculiarities and yet there is a common data
collection and only a different part of the process.

Although we could solve this problem in many different ways, let's create
a state machine for shopping like this:

domain_name

1

SE

se_credentials

es_credentials com_credentials

— T

©

We see the groups formed by the specific domains in this example.
However, the groups can indicate a higher partitioning in each of the
groups, making a process with dozens of states can be partitioned and
better-managed thanks to its division and encapsulation.
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At the same time, groups of states can be reused at different locations
throughout the workflow allowing the use of push and pop. An example
could be the lexical analysis of a text because the rules are associated
with syntactic trees and can jump from one state to another at each level,
going very deep. A stack in this case would allow the states to be stacked
and then returned in the reverse way.

10. Terminating the state machine

Termination of the state machine is accomplished by returning
stop on a callback or by calling the gen_statem:stop/1 or
gen_statem:stop/3 function.

In the implementation of our examples, we have used only the first
option considering the completion as normal. The implementation in the
example of the elevator and the traffic light is:

stop() ->
gen_statem:stop(?MODULE) .

The completion for the payment example differs because it is started
anonymously. The implementation is:

stop(Name) ->
gen_statem:stop(Name) .

Executing these functions to stop the execution of the state machines
executes the terminate/3 function. The parameters of this function are
the termination reason. In our three examples, it will always be normal.
The only way to receive a different reason would be to end the process
through the exit /2 function to specify a different reason.

The specification of the terminate/3 callback is as follows:

-spec terminate(reason(), state name(), state data()) ->
no_return().

-type reason() :: atom().

-type state name() :: atom().

-type state data() :: term().

Note

This callback is optional. By default gen_statem does not require
this function, if it is not defined it proceeds directly to terminate
the process.

For our payment example, we have the implementation of this function
as follows:

80



State Machines

terminate(normal, paid, #state{payment method = card} = State)
->
io:format("~p Name: ~s~nCard: ~s~nPaid.~n",
[self(), State#state.name, State#state.card]),
ok;

terminate(normal, paid, #state{payment method = debit} =
State) ->
io:format("~p Name: ~s~nCard: ~s~nPaid.~n",
[self(), State#state.name,
State#state.account]),
ok;

terminate(normal, StateName, StateData) ->
io:format("~p No paid.~n", [self()]),
ok.

We offer information about the completion of the payment process

depending on the information stored in the process.

11. Hot swapping code

For hot swapping, we have developed two versions of the lift. In principle,
the first elevator code is an elevator with two buttons, one to go up to a
higher floor and another to go down to a lower floor, validating whether

itis possible to do so or not.

We have developed a second version that actually acts as an elevator.
We keep the button_up/0 and button_down/0 function for backward
compatibility. We've implemented the button_num/1 function for the

actual functionality of pressing a number button.

The new code keeps the elevator moving by going up and down
depending on which buttons are pressed. If there are no more buttons
pressed, it remains on the floor until a new order is received. Also, the
number of floors is increased to 10 since the states have been modified

to be: stopped (stopped), going_up (up) and going_down (down).

As we have done with other hot code changes, we have added a version
to the headers of each code example to make it easier to change from

one version to the next:

-module(elevator).
-author('manuel@altenwald.com').
-vsn(1)

In the second version file, we have to add the same thing but add a

number to the version:

-module(elevator).
-author('manuel@altenwald.com').
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-vsn(2).

The code changes are quite extensive. In principle, we change not only
the states but also the information stored within the state. In the second
version, our state is as follows:

-record(state, {
pressed = sets:new() :: sets:sets(),
current_floor = 0@ :: pos_integer()
H.

Using a set in the button-pressed list ensures that duplicate items are
removed and we don't have to worry about them. Also, when changing the
state diagram from the floor where the elevator is located to the actual
state of the motor (stopped, going up or down) we must store the current
floor in the state data.

The code corresponding to the update for the second file must be
implemented in the code_change/4 function. This function has the
following definition:

-spec code_change(old vsn(), state name(), state data(),
extra()) -> {ok, state name(), state data()} | {error,
reason()}.

-type old_vsn() :: vsn() | {down, vsn()}.
-type vsn() :: term().

-type state _name() :: atom().
-type state data() :: term().
-type reason() :: term().

-type extra() :: term().

In the first version of the code, the implementation is empty. The code
in the first versions is not used since it will not migrate or change
information from any previous version. The second version of the code
is as follows:

code_change(1l, ground_floor, _OldData, _Extra) ->
{ok, stopped, #state{current_floor = 0}};

code_change(1l, first floor, _OldData, _Extra) ->
{ok, stopped, #state{current_floor = 1}};

code_change(1l, second floor, _OldData, _Extra) ->
{ok, stopped, #state{current_floor = 2}};

code_change({down, 1}, _, StateData, Extra) ->
NewState = case StateData#state.current_floor of
0 -> ground_floor;
1 -> first_floor;
_ -> second_floor
end,
{ok, NewState, {state}}.
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We cover upgrading from version 1 based on the state it is in and also
the supposed rollback if you roll back to version 1.

Let's test our code from a console. We assume that we have the code for
the first version in the elevator_v1 directory and the second version
in the elevator_v2 directory to perform our test.

We open a console and compile the first code. We launch the process:

> c("elevator_vl/elevator.erl").
{ok,elevator}

> elevator:start_link().
starting on the ground floor
{ok,<0.64.0>}

> elevator:button_up().
going up to the first floor
ok

> elevator:button_up().
going up to the second floor
ok

We have the process running and our elevator on the second floor. Now
we will change the code to get the functionality of a real elevator. For
this, we execute:

> sys:suspend(elevator).

ok

> c("elevator_v2/elevator.erl").
{ok,elevator}

> sys:change code(elevator, elevator, 1, []).
ok

> sys:resume(elevator).

ok

> elevator:button num(5).

* closing doors and going up

ok

< passing floor 3

< passing floor 4

> stopping on floor 5, opening doors

The code has been executed and has changed the internal state of the
process to add the new state where the current floor is the second. The
elevator goes into stopped mode (stopped) and when executing the new
command to move it to the fifth floor, it goes up from the second to the
fifth without a problem.

If we needed to go back to the previous version of the elevator code we
could execute the following code:

> sys:suspend(elevator).

ok

> sys:change_code(elevator, elevator, {down, 1}, []).
ok

> c("elevator_vl/elevator.erl").
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{ok,elevator}

> sys:resume(elevator).

ok

> sys:get state(elevator).
{second floor,{state}}

> elevator:button down().
going down to the first floor
ok

This time we must execute the back action (sys:code_change/4)
before compiling and loading the previous code. We see that the state
of the function changes correctly according to what has been developed
and once we recover the execution of the process, the operation is
correct.

12. Obtaining information from the state
machine

In Section 11, “Obtaining server information” we talk about how to
display the information of a server. At the end of the day, a state
machine is a server. However, the internal information changes subtly
when integrating the name of the state.

The specification of the function format_status/2 is the same as long
as we see two parameters but the way to call this function concerning
the second parameter differs. The function specification is as follows:

-spec format_status(status()) -> status().

-type status() :: #{
state => term(),
message => term(),
reason => term(),
log => [sys:system_event()]

Note

This callback is optional. By default gen_statem implements a
mechanism to return the state of the process if this function is not
defined.

Important

A This function is available as of OTP 25. In earlier versions,
there is an earlier version that receives two format_status/2
parameters. The difference lies in the organization of the

information, the new function uses a map and therefore it is easier
to access the data, even matching the parameters of the function.
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This callback will be used only when we use the sys:get_state/1
function. By default, we will obtain a tuple with the elements of the state
name and the state data:

> sys:get state(elevator).
{first_floor,{state}}

We can see an example of the default dump of state machine information
below using the function sys:get_status/1:

> sys:get_status(elevator)
{status,<0.64.0>,
{module,gen_statem},
[[{'$initial_call', {elevator,init,1}},
{'$ancestors',[<0.57.0>]}],
running,<0.57.0>,[],
[{header, "Status for state machine elevator"},
{data, [{"Status", running},
{"Parent",<0.57.0>},
{"Modules", [elevator]},
{"Time-outs", {6, [1}},
{"Logged Events",[]},
{"Postponed", [1}1},
{data, [{"State",{first_floor,{state}}}1}11}

We can see that there is a section with the key data (first element of the
tuple) at the end that tells us its State through a tuple of two elements
whose first element is the name of the state and the second element is
the data of the state.

In the previous data entry we can see other data such as Postponed where
the events are postponed through the specific action seen in the actions
section or Time-outs where we can see the active timers will be stored.
If we run the traffic light example we can see it:

> {ok, PID} = traffic_light:start l1ink(30_000, 30 000).
{ok,<0.117.0>}
> sys:get_status(PID).
{status,<0.117.0>,
{module,gen_statem},
[[{'$initial_call',{traffic_light,init,1}},
{'$ancestors',[<0.85.0>]}],
running,<0.85.0>,[],
[{header,"Status for state machine traffic_light"},
{data, [{"Status", running},
{"Parent",<0.85.0>},
{"Modules", [traffic_light]},
{"Time-outs", {1, [{state_timeout,
{change,green}}1}},
{"Logged Events",[]},
{"Postponed", [1}1},
{data, [{"State", {red, {state,30000,30000}}}1}11}
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You can see the information about the number of time-outs defined and
the information of each one of them. In this case we only have a state
timer.

13. Tracing a state machine

The traces help us understand what the state machine is doing when
it receives an event. The state machine can perform actions, change
state, and receive different types of timers. Traces help us see all this
information. For example, in the case of the traffic light, if we activate the
traces we can see:

> {ok, PID} = traffic light:start link(30 000, 30 000).
{ok,<0.117.0>}

* change to amber

* change to green

> sys:trace(PID, true).

ok

*DBG* traffic light receive state timeout {change,red} in
state green

* change to amber

*DBG* traffic light consume state timeout {change,red} in
state green => amber

*DBG* traffic light start timer {state timeout,b 1000,
{change,red},[]} in state amber

*DBG* traffic light receive state timeout {change,red} in
state amber

* change to red

*DBG* traffic light consume state timeout {change,red} in
state amber => red

*DBG* traffic light start timer {state timeout, 30000,

{change,green},[]} in state red

We can see the information about the state_timeout event received with
the {change, red} information while it is green and how it does the
change by going through amber first.

You can see more about the traces in the Section 12, "Tracing the server”.

14. Example of the elevator

Throughout the chapter we have seen the implementation of the elevator
in parts. Now we are going to see the complete code of this state machine
and we will test its execution. As this code has two versions, the one that
we will present here will be the second most complete version.

The complete code is the following:

-module(elevator).
-author('manuel@altenwald.com').
-vsn(2).

-behaviour(gen_statem).
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-export ([
start_link/0,
stop/0,
button num/1,
button up/0,
button down/0

1.

-export ([
callback mode/0,
init/1,
handle event/4,
terminate/3,
code _change/4
1.

-define(MAX_FLOORS, 10).
-define(TOP_BORDER FLOOR, ?MAX_FLOORS + 1).
-define(BOTTOM_BORDER_FLOOR, -1).
-define(TIME_TO_FLOOR, 1000).

-record(state, {
pressed = sets:new() :: sets:sets(),
current_floor = 0@ :: pos_integer()

H.

start link() ->
gen_statem:start_link({local, ?MODULE}, ?MODULE, [], []).

stop() ->
gen_statem:stop(?MODULE) .

button_num(Num) ->
gen_statem:cast(?MODULE, {pressed, Num}).

button up() ->
gen statem:cast(?MODULE, {pressed, up}).

button down() ->
gen_statem:cast(?MODULE, {pressed, down}).

callback mode() ->
handle _event function.

init([]) ->
io:format("* initiating elevator, floor 0~n", [1),
{ok, stopped, #state{}, [hibernate]}.

add_num(Num, #state{pressed = Pressed} = StateData) ->
NewPressed = sets:add element(Num, Pressed),
StateData#state{pressed = NewPressed}.

del num(Num, #state{pressed = Pressed} = StateData) ->
NewPressed = sets:del element(Num, Pressed),
StateData#state{pressed = NewPressed}.

current(StateData, Num) ->
StateData#state{current floor = Num}.

handle event(cast, {pressed, up}, Name, #state{current floor
= Current}) ->
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{keep_state and data, [{next event, cast, {pressed,
Current + 1}}1};
handle event(cast, {pressed, down}, Name,
#state{current_floor = Current}) ->
{keep_state and data, [{next event, cast, {pressed,
Current - 1}}1};
handle event(cast, {pressed, Num}, Name, Data)
when Num =< ?BOTTOM BORDER FLOOR orelse
Num >= ?TOP_BORDER_FLOOR ->
io:format("x received incorrect floor: ~p~n", [Num]),
keep state and data;
handle event(cast, {pressed, Num}, stopped, StateData) ->
case StateData#state.current floor of
Current when Current < Num ->
NewState = add num(Num, StateData),
Next = NewState#state.current floor + 1,
Actions = [{state timeout, ?TIME TO FLOOR, {stop,
Next}}],
io:format("* closing doors and going up~n", [1),
{next_state, going up, NewState, Actions};
Current when Current > Num ->
NewState = add num(Num, StateData),
Next = NewState#state.current floor - 1,
Actions = [{state timeout, ?TIME TO FLOOR, {stop,
Next}}],
io:format("* closing doors and going down~n", []),
{next_state, going down, NewState, Actions};
Current when Current =:= Num ->
io:format ("> current floor, doors opened~n", []),
keep _state and data
end;
handle event(cast, {pressed, Num}, StateName, StateData) ->
NewState = add num(Num, StateData),
Nums = lists:sort(sets:to list(NewState#state.pressed)),
io:format("+ adding floor ~p to stop (~p)~n", [Num,
Nums]),
{keep_state, NewState};

handle event(state timeout, {stop, Current}, StateName,
StateData) ->
case sets:is element(Current, StateData#state.pressed) of
true ->
io:format ("> stopping on floor ~p, opening
doors~n", [Current]),
NewState = del num(Current, current(StateData,
Current)),
{Up, Down} = lists:partition(fun(E) -> E > Current
end,

sets:to list(NewState#state.pressed)),
case {length(Up), length(Down), StateName} of
{06, 0, } ->
{next_state, stopped, NewState};
{UpL, , going up} when UpL > 0 ->
Next = Current + 1,
Actions = [{state timeout, ?TIME TO FLOOR,
{stop, Next}}],
{keep_state, NewState, Actions};
{0, _, going_up} ->
Next = Current - 1,
Actions = [{state timeout, ?TIME TO FLOOR,
{stop, Next}}],
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{next_state, going down, NewState,
Actions};
{_, DownL, going down} when DownL > 0 ->
Next = Current - 1,
Actions = [{state timeout, ?TIME TO FLOOR,
{stop, Next}}],
{keep_state, NewState, Actions};

{ , 0, going down} ->
Next = Current + 1,
Actions = [{state timeout, ?TIME TO FLOOR,
{stop, Next}}],
{next_state, going up, NewState, Actions}
end;
false ->

io:format("< passing floor ~p~n", [Current]),
Next = case StateName of
going up -> Current + 1;
going down -> Current - 1
end,
Actions = [{state timeout, ?TIME TO FLOOR, {stop,
Next}}],
{keep_state, current(StateData, Current), Actions}
end.

terminate( Reason, StateName, StateData) ->
ok.

code change(1l, ground floor, OldData, Extra) ->
{ok, stopped, #state{current floor = 0}};
code change(1l, first floor, OldData, Extra) ->
{ok, stopped, #state{current floor = 1}};
code change(1l, second floor, OldData, Extra) ->
{ok, stopped, #state{current floor = 2}};
code change({down, 1}, , StateData, Extra) ->
NewState = case StateData#state.current floor of
0 -> ground floor;
1 -> first floor;
_ -> second_floor
end,
{ok, NewState, {state}}.

We open a shell and try it as follows:

> c(elevator).
{ok,elevator}

> elevator:start_link().
* initiating elevator, floor 0
{ok,<0.116.0>}

> elevator:button_num(2).

* closing doors and going up

ok

< passing floor 1

> stopping on floor 2, opening doors

> elevator:button_abajo()

* closing doors and going down

ok

> stopping on floor 1, opening doors
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> lists:foreach(fun elevator:button num/1, [8,5,3,9,0]).
* closing doors and going up

ok

adding floor 5 to stop ([5,81)

adding floor 3 to stop ([3,5,8])

adding floor 9 to stop ([3,5,8,9])

adding floor 0 to stop ([0,3,5,8,9])

passing floor 2

stopping on floor 3, opening doors

passing floor 4

stopping on floor 5, opening doors

passing floor 6

passing floor 7

stopping on floor 8, opening doors

stopping on floor 9, opening doors

passing floor
passing floor
passing floor
passing floor
passing floor
passing floor
passing floor
passing floor
stopping on floor 0

HNWRUO N

VAAANANNNANANANVVAAVAVA++++

opening doors

v

elevator:stop().

The elevator is started as a process and we can make it go up and down
using the corresponding functions. As the last step, we can stop it. The
implementation of our elevator works correctly.

15. Example of the traffic light

The traffic light code as a state machine is as follows:

-module(traffic_light).
-author('manuel@altenwald.com').

-behaviour(gen_statem).

-export ([
start_link/2,
stop/0,
watch_light/0

1.

-export ([
callback _mode/0,
init/1,
handle_event/4
1.

-define (AMBER_TIME, 1000). %% 1 second

-record(state, {
green_time :: pos_integer(),
red_time :: pos_integer()

1.
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start_link(GreenTime, RedTime) ->
gen_statem:start link({local, ?MODULE}, ?MODULE,
[GreenTime, RedTime], []).

stop() ->
gen_statem:stop(?MODULE) .

watch_light() ->
gen_statem:call(?MODULE, watch light).

callback mode() ->
handle _event function.

init([GreenTime, RedTime]) ->
{ok, red, #state{
green_time = GreenTime,
red time = RedTime
}, [{state_timeout, RedTime, {change, green}}1}.

handle event(state timeout, Event, red, State) ->
io:format("* change to amber~n", [1),
{next_state, amber, State,
[{state timeout, ?AMBER TIME, Event}]};

handle _event(state timeout, {change, green}, amber, State) ->
io:format("* change to green~n", [1),
{next_state, green, State,
[{state timeout, State#state.green time, {change,
red}}1};

handle event(state timeout, {change, red}, amber, State) ->
io:format("* change to red~n", [1),
{next_state, red, State,
[{state timeout, State#state.red time, {change,
green}}l};

handle event(state timeout, Event, green, State) ->
io:format("* change to amber~n", [1),
{next_state, amber, State,
[{state timeout, ?AMBER TIME, Event}]};

handle _event({call, From}, watch light, StateName, StateData)
->
{keep_state and data,
[{reply, From, StateName}]}.

We open a shell and prove an execution:

12> c(traffic_light).
{ok,traffic_light}

13> traffic_light:start_1link(2000, 2000).
{0k,<0.103.0>}

* change to amber

* change to green

* change to amber

* change to red

14> traffic_light:watch_light().
red

* change to amber

* change to green
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* change to amber

* change to red

15> traffic_light:stop().
ok

The changes follow each other correctly and obtain information when the
traffic light changes color each time.

16. Example of payment

In the previous sections, we have seen how our code to implement the
payment state diagram progressed. This example is a bit longer than the
previous ones because it has more states and a branch in one of the
states.

However, this system is linear. It does not return to previous states and
ends after performing all the programmed transitions. This makes it the
easiest to follow.

Its full code can be seen below:

-module(payment) .
-author('manuel@altenwald.com').

-behaviour(gen_statem).

-export ([
start_link/0,
stop/1,
give_name/2,
give payment_method/2,
give card/2,
give_account/2,
get_info/1

1.

-export ([
callback _mode/0,
init/1,
handle_event/4,
terminate/3,
code_change/4
1.

-type payment_method() :: card | debit.

-record(state, {

name :: string(),

payment_method :: payment_method(),
card :: string(),

account :: string()

1.

start_link() ->
gen_statem:start_link(?MODULE, [], []).

stop(Name) ->
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gen_statem:stop(Name) .

give name(PID, Name) ->
gen_statem:call(PID, {name, Name}).

give payment method(PID, PaymentMethod) ->
gen_statem:call(PID, {payment method, PaymentMethod}).

give card(PID, Card) ->
gen_statem:call(PID, {card, Card}).

give account(PID, Account) ->
gen_statem:call(PID, {account, Account}).

get info(PID) ->
gen_statem:call(PID, info).

callback mode() ->
handle _event function.

init([]) ->
{ok, credentials, #state{}}.

handle event({call, From}, info, StateName, StateData) ->
{keep_state and data, [{reply, From, {StateName,
StateData}}]};

handle _event({call, From}, {name, Name}, credentials, State) -
>

{next_state, payment method, State#state{name = Name},
[{reply, From, ok}1};
handle event({call, From}, Event, credentials, State) ->
{keep_state and data, [{reply, From, {error, "name
required!"}}1};

handle _event({call, From}, {payment method, card},
payment _method, State) ->
{next_state, card payment, State#state{payment method =
card},
[{reply, From, ok}1};
handle event({call, From}, {payment method, debit},
payment _method, State) ->
{next_state, debit payment, State#state{payment method =
debit},
[{reply, From, ok}1};
handle _event({call, From}, Event, payment method, State) ->
{keep_state and data,
[{reply, From, {error, "payment method: card or
debit"}}1};

handle _event({call, From}, {card, Card}, card payment, State)
->
{next_state, paid, State#state{card = Card},
[{reply, From, {ok, paid}}, hibernate]};
handle event({call, From}, Event, card payment, State) ->
{keep_state and data,
[{reply, From, {error, "card required"}}1};

handle _event({call, From}, {account, Account}, debit payment,
State) ->
{next_state, paid, State#state{account = Account},
[{reply, From, {ok, paid}}, hibernate]};
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handle _event({call, From}, Event, debit payment, State) ->
{keep_state and data,
[{reply, From, {error, "account required"}}1};

handle event({call, From}, Event, paid, State) ->
{keep_state and data, [{reply, From, {error,
already paid}}, hibernatel]}.

terminate(normal, paid, #state{payment method = card} = State)

->
io:format("~p Name: ~s~nCard: ~s~nPaid.~n",
[self(), State#state.name, State#state.card]),
ok;
terminate(normal, paid, #state{payment method = debit} =
State) ->

io:format("~p Name: ~s~nAccount: ~s~nPaid.~n",
[self(), State#state.name,
State#state.account]),
ok;
terminate(normal, StateName, StateData) ->
io:format("~p No paid.~n", [self()]),
ok.

code change( _0ldVsn, StateName, StateData, Extra) ->
{ok, StateName, StateData}.

To run it we open a shell and follow these steps:

> c(payment) .

{ok, payment}

> {ok, PID} = payment:start_link().

{ok,<0.133.0>}

> payment:get_info(PID).

{credentials, {state,undefined,undefined,undefined,
undefined}}

> payment:give name(PID, "Manuel").

ok

> payment:get_info(PID).

{payment_method,

{state, "Manuel",undefined,undefined,undefined}}

> pago:give payment_method(PID, account).

{error,"payment method: card or debit"}

> pago:give payment_method(PID, debit).

ok

> pago:get_info(PID).

{debit payment, {state, "Manuel",debit,undefined,

undefined}}

> pago:give card(PID, "1234")

{error,"account required"}

> pago:give account(PID, "1234").

{ok,paid}

> pago:get_info(PID).

{paid, {state, "Manuel",debit,undefined, "1234"}}

> pago:stop(PID).

<0.133.0> Name: Manuel

Account: 1234

Paid.

ok
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We can see the progression of the payment requests until reaching the
stoppage of the process and obtain all the information. We can try to stop
the process beforehand and see the state in which the operation remains.
You can make all the tests and changes you want.
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