

Erlang/OTP
Volume II: The OTP Basics
Manuel Angel Rubio Jimenez

Translated by

Ana Maria Rubio Jimenez

Edited by

Ayanda Dube

Manuel
This is a sample, you can acquire the full
text buying the book at
https://altenwald.com/en/book/en-erlang-ii

Erlang/OTP
Volume II: The OTP Basics

Manuel Angel Rubio Jimenez

Translated by
Ana Maria Rubio Jimenez

Edited by
Ayanda Dube

Resumen

The development in Erlang is based on two bases well defined by its
creators. The first is the power of the processes that the Erlang virtual
machine implements. The second is the Concurrency Oriented Programming
methodology that is facilitated with the OTP framework.

The use of Erlang is incomplete if both are not used. Its power is not discovered
until processes have been used as the main source of programming and of the
behaviors that the OTP framework integrates. To carry out a professional project
in Erlang, knowledge and mastery of this technology is essential.

This second volume of Erlang/OTP covers the knowledge of this framework,
the creation of professional projects with it and the Concurrency Oriented
Programming or Actor Model as it is more widely known. Finish the necessary
tour to know the powers of language and its platform. It gives the reader a tour
of theory and practice, giving you even more tools and more useful code to
launch into development.

In addition we cover Erlang/OTP 25, the logger system and a chapter dedicated
to distributed programming.

Erlang/OTP: Volume II: The OTP Basics por Manuel Angel Rubio Jimenez1

se encuentra bajo una Licencia Creative Commons Reconocimiento-
NoComercial-CompartirIgual 3.0 Unported2.

1 http://altenwald.org/curriculum-vitae/manuel
2 http://creativecommons.org/licenses/by-nc-sa/3.0/

http://altenwald.org/curriculum-vitae/manuel
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://altenwald.org/curriculum-vitae/manuel
http://creativecommons.org/licenses/by-nc-sa/3.0/

Chapter 1. Type Specification
The difference between dynamic and static type checking is

the difference between X must be a car and X is a car.
— Bjarne Stroustrup

Before beginning with the exposition of the Actor Model and going fully
into the explanation of OTP, it is convenient to review once again how
the type specification works. Erlang is a dynamically typed language:
type checking is done at run time and not at compile time. However, it is
possible to specify the types of our parameters so that tools like Dialyzer
or the compiler can have more information about the types of data that
we handle in our code. In this way we can more easily locate typing errors
in our programs.

In this chapter we will talk about the spec, type and opaque directives.
These directives allow us to specify data types and input and output
parameters in the function definition.

1. Function Specification
When we want to use a function we may have doubts about what
parameters we should use when calling it. Knowing only the number of
parameters it receives we cannot determine either the expected order or
the data type supported by each one:

get_value/2

We can provide more information by writing a specification. The
definition of a specification provides information about the types of the
arguments and the return:

-spec get_value(Key::atom(),
 List::[{atom(), string()}]) ->
 string() | undefined.

With this definition we already have enough information. Based on the
names used for the parameters we know that Key can only be an atom
and that List must contain tuples whose first element is an atom and the
second a list of characters.

As return value we see that two options can be given. We can receive a
list of characters or a specific atom: undefined.

1

Type Specification

Note

If what we are defining can be of different types, we must use the
pipe symbol or pipe (|) among the alternatives.

We can also specify the types polymorphically without mixing them. For
example, a function that returns a binary if received a binary, but returns
a list if received a list, is specified as follows:

-spec to_lower(String::binary()) -> binary();
 (String::string()) -> string().

There is yet another way to define functions: by separating the
specification of the types from the function itself. An example:

-spec to_lower(String1) -> String2
 when String1 :: string(),
 String2 :: string();
 (Binary1) -> Binary2
 when Binary1 :: binary(),
 Binary2 :: binary().

The Erlang documentation often uses a similar syntax when specifying all
data. You can see more information in Appendix A, Erlang Documentation:
EDoc.

2. Basic types
Erlang has many types that we can use directly in our specifications. The
most elementary are the basic types of the system: atom, integer, float,
binary, string, pid, node or reference.

To define lists, for example a list of atoms, we can use either the
list(atom()) or [atom()] syntax. With this notation we indicate that it is a
list of atoms composed of zero, one or more atoms.

In the example of the previous section we already saw how to define the
tuples: {atom(), string()}. This tuple is made up of two elements, neither
more nor less, since the size of the tuple is delimited in the definition.

We may also use registers in our specifications. To use, for example,
a register called state in a specification, add #state{} directly without
presenting its internal composition. In the previous volume we already
saw that this compound data type is a bit special since it allows you to
declare both the default values of each of its fields and their type. For
example:

-record(state, {

2

Type Specification

 name :: pid() | atom(),
 description = "no description" :: string(),
 counter = 0 :: non_neg_integer()
}).

We can define the maps by indicating optional or mandatory keys and
the types expected for their definitions. For example:

-type spec() :: #{ id := child_id(),
 start := mfa(),
 significant => boolean(),
 restart => restart(),
 shutdown => shutdown(),
 type => worker(),
 modules => [module()] }.

In this example we can see mandatory data to be present within the map
such as id or start for being indicated with := and the rest of the
optional values when indicated with =>.

3. Compound types
We use types to give more semantics to the data we define. Erlang has
another set of more concrete types to help us better define our data,
functions, and records. These are:

term() | any()

It is a general data that matches with everyone. Both are equivalent.
Actually term() is defined as any().

binary()

The binary type can be used for matching or directly through its
syntax. But if we want to indicate that these are byte strings, we can
use binary().

bitstring()

Bitstring also refers to binaries but in this case 1 bit in size while
binary is 8 bits.

boolean()

Boolean is a small set which includes only the true or false atoms.

byte()

A number in the range 0..255 or 8 bits.

3

Type Specification

char()

A number in the range 0..16́10ffff. This limit is set by UTF-16, the
largest character table which has its number of characters limited
to 10FFFF (21 bits).

number()

It is an alias to indicate the choice: integer() | float().

list()

If nothing is indicated between parentheses it is equivalent to
[any()].

tuple()

The generic form of a tuple of any number of elements.

map()

If nothing is indicated between parentheses it is equivalent to
#{any() => any()}.

nonempty_list()

A list that must have at least one value. If nothing is specified
between parentheses it is equivalent to nonempty_list(any()).

nonempty_string()

It’s like string() but must contain at least one character.

module()

It is taken as an atom but its semantics refer to the name of a module.
However, it does not check that the module actually exists.

arity()

Numeric range 0..255. Used to indicate the number of parameters
(arity) that a function can accept.

mfa()

Definition equivalent to {module(), atom(), arity()}.

node()

An atom that we will identify as the name of an Erlang node. As in
the case of module() this also refers to an atom.

4

Type Specification

timeout()

It is a value that is used on a regular basis to define the time that a
process has to wait for a response when making a call or in general
to establish a wait. It is defined as: infinity | non_neg_integer().

non_neg_integer()

It is defined as the open range 0.. is a number equal to or greater
than zero.

pos_integer()

It is defined as the open range 1.. is a number equal to or greater
than one.

neg_integer()

It is defined as the open range ..-1 is a number equal to or lesser
than one.

Important

Although there is the possibility to indicate most parameters and
data as any() or term() this is considered a bad practice.

It is always preferable to use specific types instead of generic
ones. Generic types can only be used when the data is not known
and could be anything, such as when obtaining data using JSON
or deserializing data obtained through network communication,
file, or another method.

4. Literals and Ranges
Literals can also be used as part of the type definition. Although not all
are valid, you can use:

0 | 0..255 | ..-1 | 0..

Numbers or numeric ranges. These ranges can be bounded or open.

atom()

Any atom can be used as mentioned in the definition of timeout().

fun() | fun((...) -> Type) | fun(() -> Type) | fun((T)
-> Type)

Closures. In a general way as in the first example or indicating
the input parameters and the return type. The use of the ellipsis
indicates that the number of parameters is not taken into account.

5

Type Specification

<<>> | <<_:M>> | <<_:_*N>> | <<_:M, _:_*N>>

Binaries of different sizes.

5. Creating Data Types
To add even more semantics to the definition of functions we can create
our own types. These can be a composition of the types seen above or
simply a new name given to an existing type to make it more akin to the
data it represents.

For example, let’s create several types:

-type id() :: pos_integer().
-type user() :: binary().
-type domain() :: binary().
-type resource() :: binary().
-type jid() :: {user(), domain(), resource()}.

These types can be used to simplify or assist in the creation of new types
and the specification of functions. In many cases, simply using these
types does not require adding the parameter name.

Taking the get_value/2 example seen above we can rewrite it like this:

-type key() :: atom().
-type value() :: string().
-type property() :: {key(), value()}.
-type properties() :: [property()].
-type result() :: value() | undefined.

-spec get_value(key(), properties()) -> result().

We can parameterize the definition of a generic type. These parameters
can be used in the definition of more concrete derived types. For
example, the type keyword/0 is a orddict/2 in which we have
specified the type of the key and of the values that will be stored in the
dictionary:

-type orddict(Key, Value) :: [{Key, Value}].

-type keyword() :: orddict(atom(), string()).

Data types can be exported via the -export_type directive. There are many
modules that export their types to be used in our definitions such as
proplists. If we want to export the types defined in the previous case to
use them in other modules, we add the directive:

-export_type([keyword/0]).

6

Type Specification

The logical thing is to export the types of data that we consider useful
for other modules.

From the modules where we use these types, it will be enough to indicate
the module from which they come. A fairly common case is the type
proplists:property/0. We can use it like this:

-spec myfunc([proplists:property()]) -> ok.

The proplists module defines property/0 as a tuple of two elements
or an atom. By specifying that input parameter for myfunc/1 we accept
only property lists as a single parameter.

6. Dialyzer
Although the erlc compiler detects compilation errors in Erlang code,
there is another command called dialyzer1 that is responsible for
detecting possible type errors that go unnoticed by the compiler,
analyzing the type declaration.

Dialyzer performs a code review exchanging the types of the variables
passed as parameters for all the possible types they can contain
according to the definition of the functions, reporting any errors it finds.
These errors appear if a call to a function is detected with a variable
that, due to its initialization or origin, either cannot contain any of the
accepted types or could contain some type that is not allowed.

Note

The use of Dialyzer is not mandatory and although it is strongly
recommended, many do not use it regularly due to its slowness.
However, in development environments like Emacs, VS Code,
Sublime, and others that support language servers like Erlang LS2,
Dialyzer is executed with every code change and often be pretty
fast.

A code that does not show Dialyzer warnings or errors may
contain some bug, but for sure, a code with Dialyzer warnings
or errors contains errors, even though they have not manifested
themselves.

6.1. Generating PLT
Erlang code analysis is quite expensive if every function is analyzed,
including those of the Erlang system itself. To speed up this process,

1Dialyzer is an acronym that stands for DIscrepancy AnalYZer for ERlang (or Discrepancy Analyzer for
Erlang).
2 https://erlang-ls.github.io/

7

https://erlang-ls.github.io/
https://erlang-ls.github.io/

Type Specification

Dialyzer provides the previous generation of some files PLT3. These
files store the analysis performed on the base functions of the Erlang
applications.

There are no PLT files generated by default for the codebase, so it is
necessary to generate them. Knowing the dependencies that our code
will have, we can generate an PLT file that includes the base applications.
We do this with this command:

$ dialyzer --build_plt \

 --plt base.plt --apps erts kernel stdlib
 Compiling some key modules to native code... done in

 0m40.55s
 Creating PLT base.plt ...

Unknown functions:
 compile:file/2
 compile:forms/2
 compile:noenv_forms/2
 compile:output_generated/1
 crypto:block_decrypt/4
 crypto:start/0

Unknown types:
 compile:option/0

 done in 0m58.79s
done (passed successfully)

Parameter to indicate that the file PLT is created.

Applications to generate the file PLT.

The time it takes to scan the applications. The more
applications we add to the list, the longer this phase will take.
It will also depend on the machine where we execute the
command.

If all the base applications are not added in the generation
of the PLT file, it will indicate that there are functions not
included. This is not an error, it is just a warning. Anything that
is not parsed at the time the PLT file is created will have to be
parsed at parse time along with our code.

The same thing happens with types as with unparsed
functions: They will be parsed along with our code.

3Persistent Lookup Table or Persistent Search Table

8

Type Specification

This is the total time (58 seconds and 79 hundredths) that has
been spent executing the command.

It is advisable to try to generically add all the base applications in the
creation of the PLT file to avoid spending all that time in each check of
our code.

We can generate as many PLT files as we want. We can generate an PLT
file with the Erlang application base and a more specific one with the
dependencies of our project, for example. Both files can be used later to
check our code.

Note

By default, the generated file will be found in the base directory
of the user who launched the command. We have changed this
behavior by using the --plt parameter.

You can see more options for dialyzer by typing: dialyzer --help.

For more information see Appendix B, Command-line: Dialyzer.

6.2. Checking the types

Once we have the PLT file we can proceed to check our code. We can carry
out the execution on the directory where the code is located or on the
files with the erl extension directly.

An example using the second case:

$ dialyzer --plt base.plt \

 tcpsrv.erl

 Checking whether the PLT base.plt is up-to-date... yes

 Proceeding with analysis... done in 0m0.63s
done (passed successfully)

The PLT files that will be used to analyze the code. If we do
not specify this parameter, the ~/.dialyzer.plt file will be
used.

The files to be analyzed.

It checks if the PLT file complies with the versions of the
applications that the code to check will use.

9

Type Specification

The total time to analyze the code.

The analysis can inform us that our types have been well used or throw
errors. These errors tell us what types we should use in the function
specification where there are bugs or inaccessible code.

6.3. Opaque types

When we define data types and we want to use these data types only for
the functions specified in our code, we can resort to creating an opaque
type.

The opaque type does not give visibility to the internal composition when
displaying type errors with Dialyzer and makes it easier to display errors.
This makes it easy to change the internal composition of the data type at
any time without affecting external code.

For example when we define a data type like the following:

-type ascii() :: 0..127.

The system will use it internally as the range that we have defined and the
errors and dialyzer information will show us that same range. The name
is ignored. In an error caused on purpose we can see the output:

$ dialyzer --plt base.plt ascii.erl
 Checking whether the PLT base.plt is up-to-date... yes
 Proceeding with analysis...
ascii.erl:19: Function in_and_out_code/1 has no local return
ascii.erl:19: The call ascii:out_code(byte()) breaks the
 contract (binary()) -> binary()
 done in 0m0.52s
done (warnings were emitted)

One method so that Dialyzer and the system itself does not go beyond
the definition we have given it, considering ascii() different from 0..127,
is to make our data type opaque. This is achieved by using the type
definition as follows:

-opaque ascii() :: 0..127.

This way Erlang considers that the data type we are using is ascii() and
will not try to resolve it. Likewise, if an error or warning occurs in Dialyzer,
it will show us this data and not the range.

For example, using the ascii() type we will see errors where the output
will be displayed like this:

10

Type Specification

$ dialyzer --plt base.plt ascii.erl
 Checking whether the PLT base.plt is up-to-date... yes
 Proceeding with analysis...
ascii.erl:19: Function in_and_out_code/1 has no local return
ascii.erl:19: The call ascii:out_code(ascii:ascii()) breaks
 the contract (binary()) -> binary()
 done in 0m0.59s
done (warnings were emitted)

We should always export opaque types because they are used by other
modules. We’ll add an export_type directive very similar to the familiar
export directive:

-export_type([ascii/0]).

In this way we can use the specification from other modules using
ascii:ascii().

6.4. Types with parameters

Although they are not widely used because they add a level of complexity
that is sometimes unnecessary, parameters can be defined in the types
to be used within the type itself. An example would be the type list/1
defined like this:

-opaque list(T) :: [T].

Doing the substitution at the time of use we can write something like
list(binary()), for example, and it would be equivalent to [binary()].

We can not only use them for lists, but also for tuples, records, etc. Let’s
look at another example with tuples. The property list:

-opaque proplist(T) :: [{atom(), T} | atom()].
-opaque proplist(I, T) :: [{I, T} | I].

This time we have not created just one type with one parameter, but
two. In case of passing only one parameter we will obtain a list of tuples
of two elements whose first element has to be an atom. In the case of
passing two parameters we can define the content of both the first and
the second parameter.

6.5. Incorrect Specifications

When we make mistakes with the types is when much more information
starts to come out in the dialyzer execution. For example, if we change
the types from inet:port_number() to integer():

11

Type Specification

$ dialyzer --plt base.plt tcpsrv_errors.erl
 Checking whether the PLT base.plt is up-to-date... yes
 Proceeding with analysis...
tcpsrv_errors.erl:14: Invalid type specification for function
 tcpsrv_errors:srv_loop/1. The success typing is (port()) ->
 no_return()
 done in 0m0.64s
done (warnings were emitted)

The error tells us that we must use port() as parameter in line 14 and the
return will be of type no_return().

Important

For some functions when there is no return because the function
makes a call to exit/1, halt/1 or throw/1 the return is
indicated as no_return().

Dialyzer informs us of the line where the possible error is located for its
correction. It also gives us information to be able to correct the error. In
this case it is a type specification error. But in many cases the types may
be correct and we need to correct the calls to the function or the internal
treatment of the data.

6.6. Dialyzer with rebar3

We have seen the need to create an PLT file manually and maintain it
with the base applications. However, a project is often more complex
and contains dependencies. Automating the generation of these files to
speed up the testing of our code is a priority if we work regularly with
Dialyzer.

In this task rebar3 helps us enormously. Running rebar3 dialyzer
generates the PLT file, both to create it and to check that it still has the
last valid content and performs the type check as the last part of the
execution.

If we do the test by creating a project and running the command, we will
see an output like the following:

$ rebar3 dialyzer
===> Verifying dependencies...
===> Analyzing applications...
===> Compiling tcpsrv
===> Dialyzer starting, this may take a while...
===> Updating plt...
===> Resolving files...
===> Updating base plt...
===> Resolving files...
===> Building with 206 files in /Users/bombadil/.cache/rebar3/
rebar3_25.0.4_plt...

12

Type Specification

===> Copying /Users/bombadil/.cache/rebar3/rebar3_25.0.4_plt
 to /Users/bombadil/tcpsrv/_build/default/rebar3_25.0.4_plt...
===> Checking 206 files in _build/default/rebar3_25.0.4_plt...
===> Doing success typing analysis...
===> Resolving files...
===> Analyzing 1 files with _build/default/
rebar3_25.0.4_plt...

The generation of the PLT file can be useful if we want to manually launch
the command against a single module at any time:

$ dialyzer --plt _build/default/rebar3_25.0.4_plt src/
tcpsrv.erl
 Checking whether the PLT _build/default/rebar3_25.0.4_plt is
 up-to-date... yes
 Proceeding with analysis... done in 0m0.14s
done (passed successfully)

So it’s a good idea to create projects with rebar3 and take advantage of
its ease of using tools like Dialyzer.

13

	Erlang/OTP
	Table of Contents
	Introduction
	1. About the author
	2. About this book
	3. The Aims and Objectives of the Book
	4. Who should read this book?
	5. Structure of the Collection
	6. Nomenclature used
	7. Acknowledgements
	8. More Information on the Webpage

	Chapter 1. Type Specification
	1. Function Specification
	2. Basic types
	3. Compound types
	4. Literals and Ranges
	5. Creating Data Types
	6. Dialyzer
	6.1. Generating PLT
	6.2. Checking the types
	6.3. Opaque types
	6.4. Types with parameters
	6.5. Incorrect Specifications
	6.6. Dialyzer with rebar3

	Chapter 2. Concurrency oriented Programming
	1. Object Orientation
	2. The Actor Model
	3. Actor Components
	3.1. Asynchronous and Decoupled
	3.2. Strong Encapsulation
	3.3. No Global State
	3.4. Hot swapping of code

	Chapter 3. Behaviours
	1. What’s a behaviour?
	2. Generalization of a server
	3. Callbacks
	4. Optional callbacks
	5. The proc_lib library

	Chapter 4. Creating Servers
	1. Behaviour template
	2. Starting the server
	3. Synchronous calls to the server
	4. Asynchronous calls to the server
	4.1. Asynchronous call without waiting for an answer
	4.2. Asynchronous call with response

	5. Information not expected or without format
	5.1. Asynchronous call reception
	5.2. Collection of requests

	6. Continuing the execution
	7. Terminating the server
	8. Time events
	9. Hibernation of the server
	10. Hot code swapping
	11. Obtaining server information
	12. Tracing the server
	13. Dictionary example
	14. Fibonacci generator example
	15. Load balancer example

	Chapter 5. State Machines
	1. Events, States, and State Diagrams
	2. Mealy State Machine
	2.1. Template of a state machine

	3. Template for state functions
	3.1. Template for event management function

	4. An event life cycle
	5. Initiating the state machine
	6. Events and State change
	7. Actions
	8. Timers
	9. States groups
	10. Terminating the state machine
	11. Hot swapping code
	12. Obtaining information from the state machine
	13. Tracing a state machine
	14. Example of the elevator
	15. Example of the traffic light
	16. Example of payment

	Chapter 6. Event Handling
	1. Template for an event manager
	2. How does it work?
	3. Starting the manager
	4. Sending Events
	5. Stopping the handler
	6. Requesting information from managers
	7. Raw information in managers
	8. Change of one handler for another
	9. Hot swapping code
	10. Usando alarm_handler
	11. Example of the Logs System
	12. Example of the alarm system
	13. Scoreboard example

	Chapter 7. Supervising processes
	1. How does the supervisor work?
	2. Supervisor template
	3. Supervision strategies
	4. Fault tolerance
	5. Auto shutdown
	6. Specifying children
	7. Process restart
	8. Starting the supervisor
	9. Get information from children
	10. Add children to a supervisor
	11. Supervisor of supervisors
	12. Stop and delete children from a supervisor
	13. Adapting a process for a supervisor
	14. Example of the Dictionary
	15. Example of interconnected traffic lights
	16. Example of task supervision
	17. Example of public logs

	Chapter 8. Creating an Application
	1. Configuration
	2. Environment Variables
	3. Application life cycle
	4. Dependencies
	5. Included applications
	6. Specification of an Application
	7. Versions
	8. Application Template
	9. Application Configuration
	10. Configuration Reload
	11. Updating and rolling back from versions

	Chapter 9. Distribution
	1. High availability
	2. Process groups
	3. Mutual Exclusion Access
	4. Process pool
	4.1. How poolboy works
	4.2. Add poolboy to our application

	5. Node pool

	Chapter 10. Logs with logger
	1. Log levels
	2. Configuration
	3. API functions
	4. Filters
	5. Controllers
	6. Formatters
	7. Security

	Chapter 11. Releases in Production
	1. Generating a release
	2. Checks for a Release
	3. Packaging a release
	4. Hot Update
	5. Automating with Rebar3
	5.1. Overlays
	5.2. Extensions

	6. Hot updating with Rebar3
	7. Configuration with Rebar3

	Bibliography
	Glossary
	Appendices
	Appendix A. Erlang Documentation: EDoc
	1. The tags
	1.1. Generic tags
	1.2. General information tags
	1.3. Module tags
	1.4. Function tags

	2. References
	3. Text Format
	4. Generating the Documentation

	Appendix B. Command-line: Dialyzer
	1. PLT files
	2. Analyzing
	3. Dialyzer Parameters

	Appendix C. Parameters of erl
	1. Arguments of init
	2. Emulator arguments
	3. Plain Simple Arguments
	3.1. Plain Configuration Arguments
	3.2. Simple Arguments of Utility

	4. Emulator Options
	5. Environment Variables
	6. Configuration Files

