Erlang/OTP

VOLUME |
A Concurrent World

w4

MANUEL ANGEL RUBIO JIMENEZ

7)Y

Erlang/OTP

Volume I: A Concurrent World
Manuel Angel Rubio Jiménez

Translated by
Ana Maria Rubio Jiménez

Reviewed by

Ayanda Dube

Erlang/OTP

Volume I: A Concurrent World
Manuel Angel Rubio Jiménez

Translated by
Ana Maria Rubio Jiménez

Reviewed by

Ayanda Dube

Abstract

The Erlang programming language was born around the year 1986 in Ericsson
laboratories by the hand of Joe Armstrong. It is a functional language based on
Prolog, fault-tolerant, and oriented to real-time work and concurrency, which
provides certain advantages in terms of algorithm declaration.

Like most functional languages, Erlang requires an analysis of the problem and
a way to design the solution differently than it would be done in an imperative
programming language. It suggests a better and more efficient way to carry it
out. Itis based on a syntax that is more mathematical than programmatic, so it
tends more to solve problems than to order and execute orders.

All this makes Erlang a very appropriate language for the programming of
critical mission elements, both at the server level and at the desktop level, and
even for the development of embedded systems.

This book contains a compendium of information about what language is, how
it covers the needs for which it was created, how to get the most out of its
way of performing tasks and its orientation to the audience. It is a review from
the beginning about how to program in a functional and concurrent way in a
distributed and fault tolerant environment.

ISBN 978-84-945523-7-3

L SLoEle

788494 " 552373
Erlang/OTP, Volume I: A Concurrent World by Manuel Angel Rubio Jiménez"
is under a Creative Commons License Attribution-NonCommercial-ShareAlike
3.0 Unportedz.

* http://erlang-otp.es/
2 http://creativecommons.org/licenses/by-nc-sa/3.0/

http://erlang-otp.es/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://erlang-otp.es/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Chapter2.The language

There are only two kinds of languages: the ones
people complain about and the ones nobody uses.
—Bjarne Stroustrup

Erlang has a very particular syntax. There are people who end up liking it
and other people who consider it uncomfortable. It must be understood
that it is a language based on Prolog and with a touch of Lisp, so it
resembles more the functional languages than the imperative ones.

Most people start programming in languages such as Basic, Modula-2 or
Pascal, which have a very similar syntax between them. The same goes
for the branch of C/C++, Java, Perl or PHP, which have a syntax that is also
similar as well as the use of conditional, iterative blocks and function and
class declaration.

In imperative languages the syntax is based on the achievement of
commands that the programmer sends through the code to the machine.
In Erlang and other functional languages, the syntax is designed as if it
were the definition of a mathematical function or a logical proposition.
Each element within the function has a purpose: to obtain a value; the
set of all these values, with or without processing, makes up the result.
A basic example:

area(Base, Height) -> Base * Height.

In this example you can see the definition of the function area. The
parameters required to obtain their result are Base and Height. Parameter
declaration is followed by the achievement symbol (->), as if it were a
logical proposition. Finally, there is the internal operation that returns the
result you want to obtain.

When dealing with mathematical functions or logical propositions, there
is no correlation between imperative and functional. For a common
imperative code like the following:

for i <- 1 to 10 do

if nailing(i) = 'yes' then
hammering nail(i)
endif
endfor

There is no equivalent in Erlang that can transcribe an imperative action
as we know it. To develop in Erlang, you have to think about what you
want to do rather than how. If in a functional language you want to nail

16

The language

into a wall, you can select the function of hammering_nail, it could be
done through an understanding list:

[hammering nail(X) || X <- Nails, hammer(i) =:= 'yes'].

It must be understood that to solve problems in a functional way many
times the imperative mentality is an obstacle. We have to think about the
data we have and what data we want to obtain as a result. It is what will
lead us to the solution.

Erlang is a free-form language. You can insert as many spaces and line
breaks between symbols as you want. This area function is completely
equivalent to the previous one at the execution level:

area(
Base,
Height
) ->
Base * Height

Throughout this chapter, we will review the basis of Erlang's language.
We will see what is necessary to write general purpose basic programs
and understand this brief introduction in a more detailed and clear way.

1.Data Types

In Erlang, several data types are handled. Making a quick distinction we
can say that they are distinguished between: simple and complex; other
organizations could lead us to think of data as: scalars and sets or atoms
and compounds. However, the way to organize them is not relevant in
order to know them, identify them and use them correctly. We will use
the denomination simple and complex (or compound), being able to refer
to any of the other forms of categorization if the explanation is clearer.

As simple data we will see in this section atoms and numbers. As complex
data we will see the lists and tuples. We will also see the binary lists, a
quite powerful data type from Erlang and the records, a data type derived
from the tuples. To finish we will review a data type that was introduced
in version 17 of Erlang, the maps.

1.1.Atoms

Atoms are character identifiers that are used as keywords and help to
semantize the code.

An atom is a word that begins with a lowercase letter and is followed
by uppercase or lowercase letters, numbers and / or underscores. You

17

The language

can also use uppercase letters at the beginning, spaces and whatever
you want, as long as you enclose the expression in single quotes. Some
examples:

> is_atom(square).

true

> is_atom(a4).

true

> is_atom(signup_client).
true

> is_atom(removeClient).
true

> is atom(alert 112).
true

> is_atom(false).

true

> is_atom('HELLO').

true

> is_atom("' eh??? ').
true

Atoms have the sole purpose of helping the programmer identify specific
structures, algorithms and code.

There are atoms that are used very frequently such as: true, false and
undefined.

Important

A Each time an atom is used, the representation is added to an

internal table. This table has a finite but configurable size. By
default, the maximum value of different atoms that can be used
in an Erlang virtual machine is 1,048,576. This value can be
extended with the +t parameter.

One of the ways to ensure not to exceed the limit of available
atoms is to use them explicitly in the code. In this way you have a
control of how many atoms are being used and at the moment of
loading the code we can be notified when the number has been
exceeded.

If we need to convert other data types to atoms and make sure
we do not exceed the limit, we can use the set of functions
*_to_existing_atom/1-2.

Atoms along with integer and real numbers as well as text strings make
up what is known in other languages as literals. They are data that have
a meaning in themselves, and can be assigned directly to a variable.

18

The language

Note

As literals we can specify numbers, but also values of
representations of the character table. As in other languages,
Erlang allows to give the value of a specific character through the
use of the syntax: SA, $1, S!. This will return the numerical value
to the symbol indicated after the dollar symbol in the character
table.

1.2.Integer and Real Numbers

In Erlang, there are two types of numbers, as shown in this code example
in the console:

> is_float(5).
false

> is_float(5.0).
true

> is_integer(5.0).
false

> is_integer(5).
true

Another thing that surprises about Erlang is its numerical accuracy.
If we multiply very high numbers we will see how the result is still
shown in integer notation, without using the scientific notation that other
languages show when an operation exceeds the limit of calculation of
the integers (or erroneous values because of the overflow effect):

> 102410241024 * 102410241024 * 1234567890.
12947972063153419287126752624640

This feature makes Erlang a very accurate and suitable platform for bank
interest calculations, telephone pricing, stock indexes, statistical values,
position of three-dimensional points, etc.

Note

The numbers can also be indicated by prefixing the base in which
we want to express them and using the hash key (#) as a separator.
For example, if we want to express the numbers on octal basis,
we will do it by putting the base before the number we want
to represent 8#124. Analogously 2#1011 represents a binary
number and 16#f42a represents a hexadecimal number.

19

The language

1.3.Variables

Variables, as in mathematics, are symbols to which one (and only one)
value is linked throughout the execution of the specific algorithm. This
means that each variable can only contain one value during its lifetime.

The format of the variables starts with a capital letter, followed by as
many letters, numbers and underlines as needed or desired. A variable
can have this form:

> Pi = 3.1415.

3.1415

> Telephone = "666555444" .
"666555444"

> Debug = true.

true

Arithmetic expressions can be performed on the variables, if they contain
numbers, list operations or they can be used as a parameter in function
calls. An example of variables containing numbers:

Base = 2.

Height = 5.2.

Base * Height.
0.4

=V UV NV
N

If at any given moment, we want Base to have the value 3 instead of the
value 2 initially assigned, we would see the following:

> Base = 2.

> Base = 3.
** exception error: no match of right hand side value 3

What is happening is that Base is already binded to the value 2 and that
the match with the value 2 is correct, whereas if we try to fit it with the
value 3, it results in an exception. An error because Base was binded to
value 2 and it's not possible to match with 3.

20

The language

Note

For our tests, at the console level and to avoid having to leave and
enter each time we want Erlang to forget the value with which a
variable was linked, we can use:

> f(Base).
ok
> Base = 3.

To eliminate all the variables stored in the console, you can use:
£0).

The advantage of the unique assignment is the ease of analyzing code
even though it is often not considered that way. If a variable during the
execution of a function can only contain a certain value, the behavior of
that function is very easily verifiable.

1.4.Lists

The lists in Erlang are vectors of heterogeneous information, that is,
they can contain information of different types, whether numbers, atoms,
tuples or other lists.

The lists are one of the powers of Erlang and other functional languages.
Asin Lisp, Erlang manages the lists as a high-level language, in declarative
mode, allowing things such as list comprehensions or the aggregation
and elimination of specific elements as if they were sets.

1.4.1.What can we do with a list?
A list of elements can be defined directly as presented below:

>[1, 2,3, 4,5].
[1,2,3,4,5]

> [1, "Hello", 5.0, hello].
[1,"Hello",5.0,hello]

To these lists you can add or subtract elements with the special operators
++and -- As it is given in the following examples:

> [1,2,3] ++ [4].
[1,2,3,4].

> [1,2,3] -- [2].
[1,3]

Another common use of the lists is the way in which you can take items
from the list header leaving the rest in another sublist. This is done with
this simple syntax:

21

The language

> [H|T] = [1,2,3,4].
[1,2,3,4]

> H.

1

> T.

[2,3,4]

> [H1,H2|T2] = [1,2,3,4].
[1,2,3,4]

> H1.

1

> H2.

2

> T2.

[3,4]

> [1, 2, 3, 4] = [1|[2][3][4][111]].
[1,2,3,4]

In this simple way, the implementation of the well-known push and pop
algorithms for insertion and extraction in stacks are as trivial as:

> List = [].
[1
> List2 = [1|List].

> List3 = [2]|List2].

[2,1]

> [PopElement|List2] = List3.
[2,1]

> PopElement.

2

> List2.
[1]

However, not being able to maintain a single variable for the stack makes
it difficult to use. We will analyze this matter later with the treatment of
processes and functions.

1.4.2.5trings

Strings are a specific type of list. It is an homogeneous list of elements
that can be represented as characters. Erlang detects that if a list in its
entirety meets this premise, it is a string of characters.

Therefore, the representation of the word Hello in the form of a list can
be done as a list of integers representing each of the letters or as the text
enclosed in double quotes ("). A demonstration:

> "Hello" = [72,101,108,168,111].
"Hello"

As you can see, the assignment does not give any error since both values,
left and right, are the same for Erlang.

22

The language

Important

A This way of dealing with strings is very similar to that used in C
language, where the char data type is an 8-bit data in which a
value from 0 to 255 can be stored and the printing functions will
take as representations of the table of characters in use by the
system. In Erlang, the only difference is that each data is not 8
bits but is an integer which leads to greater memory consumption
but better support of new tables such as UTF-16 or extensions of
UTF-8.

As with the rest of the lists, the strings of characters also support the
aggregation of elements, so that the concatenation could be done in the
following way:

> "Hello, " ++ "world!".
"Hello, world!"

One of the advantages of Erlang's own allocation is that if it finds a
variable that has not been binded to any value, it automatically takes the
necessary value for the equation to be true. Erlang always tries to make
the elements on both sides of the assignment sign equal. An example:

> "Hello, " ++ A = "Hello, world!".
"Hello, world!"

> A.

"world!"

This notation has its limitations, specifically the unassigned variable must
be at the end of the expression, since otherwise the code to perform the
match would be much more complex.

1.4.3.Binary lists

Character strings are formed by sets of integers, that is, twice as much
memory is consumed for a string of characters stored in a list in Erlang
than in any other language. Binary lists allow you to store character
strings with byte size and to perform specific jobs with byte sequences
or even at bit level.

The syntax of this type of lists is as follows:

> <<"Hello">>.
<<"Hello">>

> <<72,101,%$1,$1, $0>>.
<<"Hello">>

The binary list does not have the same functionality as the previously
viewed lists. You cannot add elements or use the annexing and deleting

23

The language

elements syntax as it had been seen before. But it can be done in a more
powerful way.

For example, the way in which we took the head of the list in one variable
and left the rest in another variable, can be simulated in the following
way:

> <<H:1/binary,T/binary>> = <<"Hello">>.
<<"Hello">>

> H.

<<"H">>

> T.

<<"ello">>

The concatenation in the case of binary lists is not done as in normal lists
using the ++ operator. In this case it must be done in the following way:

> A = <<"Hello ">>.

<<"Hello ">>

> B = <<"world!">>.
<<"world!">>

> C = <<A/binary, B/binary>>.
<<"Hello world!">>

To obtain the size of the binary list we use the function byte_size/1.
In the previous case for each of the variables used:

byte size(A).

byte size(B).

=V OoOVoyVv

byte size(C).
2

This syntax is a little more elaborate than that of the lists, but it is because
we go into the true power that binary lists have: the handling of bits.

1.4.4.Working with Bits

In the previous section we saw the basic syntax to simulate the behavior
of the chain when taking the head of a stack. This syntax is based on the
following format: Var:Size/Type; being optional Size and Type, although
not for all the cases. We will see this further.

The size is linked to the type, since a unit of measurement is nothing
without its quantizer. In this case, the quantizer (or type) that we have
chosen is binary. This type indicates that the variable will be binary list
type, so the size will be referring to how many elements of the list will
contain the variable.

In case the size is not indicated, it is assumed that it is as much as the
support type and/or to fit the value to which it must be matched (if

24

The language

possible) so in the example of the previous sections to get the head and
tail values, the variable T remains with the rest from the binary list.

The types also have a complex way of forming themselves, since several
elements can be indicated to complete the definition of the same. These
elements are, in order of specification: Endian-Sign-Type-Unit, we will see
the possible values for each of them:

Endian

Is the way in which the bits are read in the machine, whether itis in
Intel or Motorola format, that is, little or big respectively. In addition
to these two, itis possible to choose native, which will use the native
format of the machine on which the code is running. The default
value is set to big.

> <<1215261793:32/big>>.
<<"Hola">>

> <<1215261793:32/1little>>.
<<"aloH">>

> <<1215261793:32/native>>.
<<"aloH">>

In this example you can see that the machine where I'm running
these examples is of the little type or Intel sorting.
Sign

It is indicated if the number will be stored in signed or unsigned
format. The sign usually affects only to integer numbers for which
the first bit could be used as the sign taking the value of O for
positive numbers and 1 for negative numbers:

> <<51:16/signed>> = <<32767:16>>, S1.

32767

> <<52:16/signed>> = <<32768:16>>, S2.
-32768

> <<U1:16/unsigned>> = <<32768:16>>, Ul.
32768

This example shows us how a 16-bit integer is interpreted in two
different ways depending if we use signed or unsigned parameters.

Type

Is the type with which the data is stored in memory. Depending on
the type, the size is relevant to indicate precision or number of bits,
for example. The available types are: integer, float and binary.

By default type is integer as you can see in previous examples. If we
are using integer type we can omit it to save space.

25

The language

Unit

This is the value of the unit, by which it will multiply the size. In case
of integers and floating point the default value is 1, and in case of
binary it is 8. Therefore: Size x Unit = Number of bits; for example,
if the unit is 8 and the size is 2, the bits occupied by the element
are 16 bits. It's useful if you want to retrieve elements from a binary
using other bit sizes.

The syntax is as follows:

> <<A:1/big-signed-integer-unit:16>> = <<65535:16>>, A.

This simplifies the way to indicate sizes in some specific uses like
when we want to indicate nibbles (4 bits), bytes (8 bits), words (16,
32 or 64 bits) instead of bits.

If we wanted to store three data of red, green and blue color in 16 bits,
taking for each of them 5, 5 and 6 bits respectively, we would have
that the partition of the bits could be done in a somewhat difficult way.
With this handling of bits, to compose the chain of 16 bits (2 bytes)
corresponding, for example, to the values 20, 0 and 6, would be like this:

> <<20:5, 0:5, 60:6>>.

<<" <">>

Note

To obtain the size of the binary list in bits we can use the function
bit_size/1 that will return the size of the binary list:

> bit size(<<"Hello world!">>).
96

1.5.Tuples

Tuples are organizational data types in Erlang. Tuple lists can be created
to form homogeneous datasets of heterogeneous individual elements.

Tuples, unlike lists, cannot increase or decrease their size except for the
complete redefinition of their structure. They are used to group data with
a specific purpose. For example, imagine that we have a directory with
a few files. We want to store this information in order to treat it and we
know it will be: route, name, size and date of creation.

This information could be stored in the form of a tuple in the following
way:

26

The language

{ "/home/me", "text.txt", 120, {{2011, 11, 20}, {0, O, 0}} }.

The keys indicate the start and end of the definition of the tuple, and the
elements separated by commas make up its content.

Note

In the example you can see that both date and time have been
entered in a somewhat peculiar way. In Erlang, the functions of
the modules of its standard library work with this format, and if it
is used, it is easier to process and work with dates. For example,
if we were to execute:

> {date(), time()}.
{{2011,12,6},{22,5,17}}

This type of data is also used to emulate the associative arrays (or hash).
These arrays store information so that it is possible to rescue it by means
of the text or specific identifier that was used to store it. It is used in those
cases in which it is easier to access the element by a known identifier
than by an index that could be unknown.

1.5.1.Dynamic modification of tuples
There are times when we need to add a value to a tuple, remove a value or
take the value that is in a position without having to make a concordance.
For this we can choose to use this set of functions that | list below:

erlang:setelement/3

Change the element of a tuple without modifying the rest of the
elements:

> erlang:setelement(2, {a, b, c}, 'B').
{a,'B",c}

erlang:append_element/2
Add an element to the end of the tuple:

> erlang:append _element({a, b, c}, d).
{a,b,c,d}

erlang:element/2

Gets an element of the tuple given its index:

27

The language

> element(1,{a,b,c}).
a

erlang:delete_element/2

Remove an element from a tuple:

> erlang:delete_element(2,{a,b,c}).
{a,c}

1.5.2.Property list

A property list is a list of key-value pair tuples. It is managed through the
proplists module. Property lists are widely used to store configurations
or in general any variable information that is required to be stored.

Let's suppose we have the following data sample:

> A = [{path, "/"}, {debug, true}, {days, 7}].

Now suppose that from this list, which has been loaded from any file or by
any other method, we want to check whether or not to debug the system,
that is, show log messages if the debug property equals true:

> proplists:get_bool(debug, A).
true

As it is very possible that the keys that exist at a certain moment in the
list are not known, the functions is_defined/2, or get_keys/1 help
us to check if a key exists in the list or obtain a list of keys from the list
respectively.

An example of possible use as a hash table would be:

> Months = [
{january, 31}, {february, 28}, {march, 31},
{april, 30}, {may, 31}, {june, 30},
{july, 31}, {august, 31}, {september, 30},
{october, 31}, {november, 30}, {december, 31}
Ia
> proplists:get_value(january, Months).
31
> proplists:get_value(june, Months).
30

The use of property lists in this way gives us access to the data that we
know exist within a collection (or list) and allows us to extract only those
we want to obtain.

28

The language

Note

The proplists module contains many more useful functions to
handle this type of data collection in an easy way. It is not a bad
idea to go over it and see all the possible options that we can get
out of this module in our programs.

1.6.Records

Records are a specific type of tuple that facilitates the access to the
individual data within the same one by means of a name and a syntax of
access much more comfortable for the programmer. Internally for Erlang,
records do not really exist. At the preprocessor level they are exchanged
for tuples. This means that the records themselves are a simplification at
the level of use of the tuples.

Since records are used at the preprocessor level, in the console we can
only define records using a specific console command. In addition, we
can load the existing records into a file and use them from the console
itself to define data or to use the own data management commands with
records.

The definition of records from the console is done in the following way:

> rd(agenda, {name, surname, phone}).

To declare a record from a file, the format is as follows:

-record(agenda, {name, surname, phone}).

The declaration can be complicated a bit more if we add default values
in the previous definition:

-record(agenda, {
name,
surname =
phone

1.

wn
’

Or from the console in this way:

> rd(agenda, {name, surname = , phone}).

The default values of each of the elements of the record is always
undefined. In the previous case, we can check it in the following way:

29

The language

> #agenda{}.
#agenda{name = undefined,surname = [],phone = undefined}

At the time of declaring or using a record we may want to change most
fields for a specific value different from undefined:

> #agenda{_=null}.
#agenda{name = null,surname = null,phone = null}
> #agenda{name = "Manuel", = no}.

#agenda{name = "Manuel",surname = no,phone = no}

Note

Erlang code files usually have the extension erl, however, when it
comes to codes of header type, these files maintain an extension
halfway between the C header (which have the extension .h)
and the code typical of Erlang. Its extension is: hrl. Normally
definitions and records will be introduced in these files.

Let's see with a little test that if we create a tuple A, Erlang recognizes it
as a tuple of four elements. If we later load the file agenda.hrl whose
content is the definition of the agenda record, the treatment of the tuple
is automatically modified and we can now use the notation for records
of the following examples:

> A = {agenda, "Manuel", "Rubio", 666666666} .

{agenda, "Manuel", "Rubio", 666666666}

> rr("agenda.hrl").

[agenda]

> A,

#agenda{name = "Manuel",surname = "Rubio",
phone = 666666666}

Erlang recognizes the name of the record as the first data of the tuple
and since it has the same number of elements, if we do not consider the
identifier, it automatically considers it as a record. You can also continue
using the functions and typical elements of the tuple since for all intents
and purposes it is still so.

Note

To obtain the position within the tuple of a field, simply write it
in the following way:

#agenda.nombre

This will return to us the relative position defined as a name in
relation to the tuple that contains the agenda type record.

30

The language

To process the data of a record, we can perform any of the following
actions:

> A#agenda.name.

"Manuel"
> A#agenda.phone.
666666666
> A#agenda{phone = 911232323}.
#agenda{name = "Manuel",surname = "Rubio",
phone = 911232323}
> #agenda{name = "Juan Antonio",surname = "Rubio"}.
#agenda{name = "Juan Antonio",surname = "Rubio",

phone = undefined}

Always remember that the assignment remains unique.

To access to the content of a data in a field of the record, we will access
indicating that it is a record (data#record (A#agenda in the example) and
then add a point and the name of the field we want to access to.

To modify the data of an existing record instead of the point we will use
the keys. Within the keys we will establish as many key=value equalities
as we need (separated by commas), as seen in the previous example.

To obtain information about the records at a given moment, we can use
the function record_info/2.This function has two parameters, the first
is an atom that can contain fields, if we want to return a list of atoms
with the name of each field; or size, to return the number of fields that
the tuple has where the record is stored (including the identifier, in our
examples agenda).

Important

A As mentioned above, records are entities that work at the
language level but Erlang does not consider them at runtime. This
means that the preprocessor works to convert each instruction
concerning records to be relative to tuples and therefore

the function record_info/2 cannot be used with variables.
Something like the following:

> A = agenda, record info(fields, A).

It will return us illegal record info.

Since the records are internally tuples, each field can contain any
other data type, not only atoms, strings or numbers, but also other
records, tuples or lists. Therefore, this structure proposes an interesting
organizational system to be able to directly access the data that we need
at a given moment facilitating the work of the programmer enormously.

31

The language

1.7.Maps

Maps are data structures. Each item is stored under an index or key and
contains a value. The index can be of any type as well as its content. We
can define a map in the following way:

> M = #{ name => "Manuel" }.
#{name => "Manuel"}

We can add and change map data as we would do with a record, in the
following way:

> M2 = M#{ surname => "Rubio" }.
#{surname => "Rubio",name => "Manuel"}

We can also indicate a change on an existing index. The indicator change
and its function are useful for modifying data initially defined in the map.
If the data does not exist, the system will fail:

> M3 = M2#{ name := "Juan" }.
#{surname => "Rubio",name => "Juan"}
> M4 = M3#{ phone := 666555444 }.

** exception error: bad argument

To extract a value, we must perform values matching. In the previous
example, to extract the name:

> #{ name := Name } = M3.

#{surname => "Rubio",name => "Juan"}
> Name.

"Juan"

In this case, the symbol :=is used to indicate the required existence of
the key to obtain its value.

Note

EEP-0043" indicates the possibility of extracting a simple value
using another syntax easier and without requiring the use of a
variable for concordance. In version 22.0 it has not yet been
implemented although it appears in the standard.

The maps module contains the functions that allow you to delete a key,
search using a function instead of concordance, detect if it is @ map or
not, obtain the number of keys and some other options.

* http://www.erlang org/eeps/eep-0043.html

32

http://www.erlang.org/eeps/eep-0043.html
http://www.erlang.org/eeps/eep-0043.html

The language

Some examples:

> maps:remove(name, M3).
#{surname => "Rubio"}

> maps:get(name, M3).
"Juan”

> is_map(M3).

true

> map_size(M3).

2

> maps:keys(M3)
[surname, name]

1.8.Data conversion

It is important to know how to convert data types. Mainly to be able to
change a character string data type to a binary string, or towards an atom
or even like number.

Many times, it is necessary to convert to another format a data entry
collected from a file, a connection from/to another machine or from a
standard input.

The most useful conversions are those we can make between string
and numeric type formats. For example, if we have a list of characters
containing a decimal number and we would like to convertitto a number,
we would have to execute the following:

> list_to_integer(101).
101

We can also indicate that the text represents a number in another
different base such as 2, 8, 16 or 36:

> list_to_integer("101", 2).
5
> list_to_integer("101", 8).
65
> list to integer("101", 16).
257
> list_to_integer("101", 36).
1297
> list_to_integer("101", 64).
** exception error: bad argument
in function 1list to_integer/2
called as list to integer("101",64)

The maximum base number for the representation of a number is 36. If
we try to indicate a higher number, as we can see above, an error will
occur. This is due to the range of symbols chosen when specifying the
base: 10 numeric digits and 26 letters.

33

The language

Note

From the R16 version of Erlang, functions were added to convert
from binary to integer and vice versa. Previously you had to
convert first to list to be able to convert after or to whole or to
binary.

The conversion functions are the following:
atom_to_list/1, atom_to_binary/2

These functions are responsible for converting an atom data to
a character or binary list. The second parameter in the binary
conversion indicates the set of characters to be used. The most used
are utf8 and latin1, but there are many more.

binary_to_atom/2, binary_to_float/1, binary_to_integer/1-2,
binary_to_list/1-3

From binary to atom, floating point number, integer and character
list. For the atom, the character set must be indicated. For an integer
we can optionally indicate the base and for list of characters we can
specify the start and end (starting from 1) to take only the elements
of the binary to be included in the list of characters.

> binary to atom(<<"1234">>, utf8).
‘1234
> binary to float(<<"1234">>).
** exception error: bad argument

in function binary to_float/1

called as binary_to_float(<<"1234">>)

> binary to_ float(<<"1234.0">>).
1234.0
> binary_to_integer(<<"1234">>).
1234
> binary_to_integer(<<"1234">>, 16).
4660
> binary to_integer(<<"ff">>, 16).
255

list_to_atom/1, list_to_binary/1, list_to_float/1, list_to_integer/1-2,
list_to_pid/1, list_to_ref/1

Convert the content of the list to the data type specified in the
function.

integer_to_binary/1-2, integer_to_list/1-2, float_to_binary/1-2,
float_to_list/1-2

We saw examples of these functions above. The number stored
in the variable is represented and stored in a binary variable or

34

The language

character list. The second parameter allows you to specify the base
in which the number will be converted.

list_to_tuple/1, tuple_to_list/1

Convert a list into a tuple and a tuple in a list respectively:

> erlang:list_to_tuple([1,2,3,4]).
{1,2,3,4}
> erlang:tuple_to_list({1,2,3,4}).
[1,2,3,4]

2.Printing on screen

Many times, we will need to display data on the screen. At the moment, all
the information we see is because the console shows it to us, as a result
of the output of the code we are writing. However, there are moments,
in which it will be necessary to make a concrete exit of a data with more
complete information.

To do this, we have the io module, from which we will only use the
io:format/2 function for now. This function allows us to print on the
screen the information we want to show, based on a specific format that
is passed as the first parameter.

Note

For those who have programmed with languages such as C, Java,
PHP, ... this function is equivalent and very similar to printf, that
is, the function is based on a string with a specific format (adding
parameters) that will be replaced by the values indicated in the
following parameters.

For example, if you want to display a string on the screen, we can write
the following:

> jo:format("Hello world!").
Hello world!ok

This goes like this because the return of the function is ok, so the string
is printed and then the return of the function (the function return is
always printed in the console). To make a car return, we must insert a
special character. Unlike other languages where special characters are
used, Erlang does not use the backslash, but uses the tilde (~), and after
this symbol, the characters are interpreted in a special way. We have:

Print the symbol of the tilde.

35

The language

Represents a character that will be replaced by the corresponding
value passed in the list as the second parameter. Before the letter
cyou can add a pair of numbers separated by a full stop. The first
number indicates the size of the field and the justification to left
or right according to the positive or negative sign of the number.
The second number indicates how many times the character will be
repeated. For example:

> io:format("[~c,~5¢c,~5.3c,~-5.3c]~n", [$a,$b,$c,$d]).
[a,bbbbb, ccc,ddd 1
ok

elflg

They are responsible for presenting floating point numbers. The
format of eis scientific (X.Ye+Z) while fis presented in a fixed-point
format. The format g is a mixture since it presents the scientific
format (e) if the number is out of the range [0.1.10000.0], and
otherwise presents the format of a fixed point (f). The numbers
that can be prefixed to each letter indicate, the size you want to
represent and justification (as seen before). After the point the
precision. Some examples:

> io:format("[~7.2e,~7.2f,~7.49]", [10.1,10.1,10.1]).
[1.0e+1, 10.10, 10.10]ok

> Args = [10000.67, 10123.23, 1220.32],

> io:format("~11.7e | ~11.3f | ~11.7g ", Args).
1.000067e+4 | 10123.230 | 1220.320 ok

Print a character string. Similar to ¢, but the meaning of the second
number in this case is the number of characters in the list that will
be displayed. Let's see some examples:

> Hello = "Hello world!",
> jo:format("[~s,~-7s,~-7.5s]", [Hello, Hello, Hello]).
[Hello world!,Hello w,Hello]Jok

w/W

Print any data with its standard syntax. It is used above all to be
able to print tuples, but it also prints lists, numbers, atoms, etc. The
only caveat is that a character string will be considered as a list. The
prefix numbers are used in the same way as in s. An example:

> Data = [{hello,world},10,"hello",world],

36

The language

> io:format("[~w,~w,~w,~w]~n", Data).
[{hello,world}, 10, [104,101,108,168,111],world]
ok

The W version is similar to the previous one although it takes two
parameters from the parameter list. The first is the data that will
be printed, the second is the depth. If we print a list with many
elements, we can show only a certain number of them. From that
number add ellipses. An example:

> io:format("[~wW]l", [[1,2,3,4,5],3]).
[[1,2]...1]0k

p/P

It is the same as w, but it tries to detect if a list is a character string
to print it like that. If the impression is too large, it will be divided
in several lines. The uppercase version is also the same as its W
namesake, accepting an extra parameter for depth.

b/B/x/X/+/#

They print numbers according to the indicated base. The previous
numbers to each letter (or symbol) indicate, the first the magnitude
and the justification of the presentation and the second the base
in which the number will be expressed. They all print numbers, but
there are differences between them.

B prints the numeric parameter. If the base is greater than 10 the
letters will be printed in capital letters. With b the letters are printed
in lowercase letters.

With X and x they are equal to the previous ones adding the
possibility of using a prefix taken from the next parameter in the list
of parameters, consecutive to the value to be represented.

The number sign (#) always give preference to the base in Erlang
format: 10#20 (decimal), 8#65 (octal), 16#1A (hexadecimal). The
plus sign (+) is the same but writing the letters in lowercase. An
example:

> io:format("[~.2b,~.16x,~.16#]", [21,21,"0x",21]).
[10101,0x15, 16#15]ok

It ignores the parameter that you use. It is useful if the format of
the parameters that is passed is always the same and if you want to
ignore a specific one in a specific format.

37

The language

Carriage return, makes a line break, so that you can separate by
different lines what you want to print on the screen.

Note

There is also the io_lib module that also has the function
format/2. The only difference it presents is that instead of
presenting the resulting string on the screen, it returns it as a
string of characters.

38

	Erlang/OTP
	Table of Contents
	Introduction
	1. About the author
	2. About this book
	3. The Aims and Objetives of the Book
	4. Who should read this book?
	5. Structure of the Collection
	6. Nomenclature used
	7. Acknowledgements
	8. More Information on the Webpage

	Chapter 1. What you should know about Erlang
	1. What is Erlang?
	2. Erlang Features
	3. History of Erlang
	4. Developments with Erlang/OTP
	4.1. Business Sector
	4.2. EEF: Erlang Ecosystem Foundation
	4.3. Free Software

	5. Erlang and the Concurrency
	5.1. The case of Demonware
	5.2. The case of League of Legends
	5.3. Yaws vs. Apache

	Chapter 2. The language
	1. Data Types
	1.1. Atoms
	1.2. Integer and Real Numbers
	1.3. Variables
	1.4. Lists
	1.4.1. What can we do with a list?
	1.4.2. Strings
	1.4.3. Binary lists
	1.4.4. Working with Bits

	1.5. Tuples
	1.5.1. Dynamic modification of tuples
	1.5.2. Property list

	1.6. Records
	1.7. Maps
	1.8. Data conversion

	2. Printing on screen

	Chapter 3. Real Time
	1. Date and Time data types
	2. Monotonic time
	3. The Erlang time and the Operating System time
	4. Before version 18
	5. Since version 18
	6. Time tunnels
	7. How to keep the code safe?

	Chapter 4. Expressions, Structures and Exceptions.
	1. Expressions
	1.1. Arithmetic Expressions
	1.2. Logical Expressions
	1.3. Operator Precedence

	2. Flow Control Structures
	2.1. Pattern Matching
	2.2. Case structure
	2.3. The if Structure
	2.4. List Comprehensions
	2.5. Binary comprehensions
	2.6. Functional blocks

	3. Exceptions
	3.1. Exception handling: catch
	3.2. Throwing an exception
	3.3. The try...catch structure
	3.4. Most common execution errors

	Chapter 5. Functions and Modules
	1. Code organization
	2. Scope of functions
	3. Polymorphism and match
	4. Guards
	5. Closures
	6. Functional programming
	7. Recursion
	7.1. Mergesort
	7.2. Quicksort

	8. Integrated functions (BIFs)

	Chapter 6. Processes
	1. Anatomy of a process
	2. Advantages and disadvantages
	3. Spawning processes
	4. Naming Processes
	5. Communication between Processes
	6. Linked Processes
	7. Process Monitoring
	8. Code reload
	9. Process Management
	10. Erlang Nodes
	11. Hidden Nodes
	12. Remote Processes
	13. Local or Global Processes
	14. RPC: Remote Procedure Call
	15. Process Dictionary

	Chapter 7. ETS, DETS and Files
	1. ETS
	1.1. Types of Tables
	1.2. Access to ETS
	1.3. Creation of an ETS
	1.4. Reading and Writing in ETS
	1.5. Match: Advanced search
	1.6. Deleting tuples
	1.7. ETS to File

	2. DETS
	2.1. Types of tables
	2.2. Create or open a DETS
	2.3. Handling of the DETS
	2.4. From ETS to DETS and vice versa

	3. Files
	3.1. Opening and closing files
	3.2. Reading Text Files
	3.3. Writing Text Files
	3.4. Reading Binary Files
	3.5. Writing Binary Files
	3.6. Random access Files
	3.7. Batch Readings and Writings

	4. File Management
	4.1. File Name
	4.2. Copy, Move and Delete Files
	4.3. Permissions, Owners and Groups

	5. Directory Management
	5.1. Working Directory
	5.2. Creation and Removal of Directories
	5.3. Content of the Directories

	Chapter 8. Communications
	1. Basic concepts for Networks
	1.1. IP Addresses
	1.2. Ports

	2. UDP Client and Server
	3. TCP Client and Server
	4. Concurrent TCP Server
	5. Advantages of inet

	Chapter 9. Erlang Ecosystem
	1. Starting a Project
	1.1. Installing rebar3
	1.2. Writing the Code

	2. Compile and Clean
	3. Creating and running an application
	4. Dependencies
	5. Development Shell
	6. Release and Deploy
	7. Hot Upgrade
	8. Scripting in Erlang
	9. The way to OTP

	Appendixes
	Appendix A. Erlang Installation
	1. Windows Installation
	2. GNU/Linux Installation
	2.1. From Binary Packages
	2.2. Compiling the Source Code

	3. Other Systems

	Appendix B. The Command-Line
	1. Records
	2. Modules
	3. Variables
	4. History
	5. Processes
	6. Working directory
	7. JCL Mode
	8. Exit from the shell

	Appendix C. Graphic Tools
	1. Observer
	2. Debugger

